POWER TRANSFORMER | DISTRIBUTION TRANSFORMER | TRANSFORMER DESIGN | TRANSFORMER PRINCIPLES | TRANSFORMER THEORY | TRANSFORMER INSTALLATION | TRANSFORMER TUTORIALS
TRANSFORMER FAILURE MODE BASICS AND TUTORIALS
TRANSFORMER FAILURE MODE BASIC INFORMATION
What Is Transformer Failure Mode?
Transformer Failure Modes
The failure of a power transformer is almost always a catastrophic event that will cause the system to fail, and the result will be a messy cleanup job. The two primary enemies of power transformers are transient overvoltages and heat.
Power input to a transformer is not all delivered to the secondary load. Some is expended as copper losses in the primary and secondary windings. These I2R losses are practically independent of voltage; the controlling factor is current flow.
To keep the losses as small as possible, the coils of a power transformer are wound with wire of the largest cross section that space will permit. A medium-power, 3-phase power transformer is shown in Figure 4.29.
A practical transformer also will experience core-related losses, also known as iron losses. Repeated magnetizing and demagnetizing of the core (which occurs naturally in an ac waveform) results in power loss because of the repeated realignment of the magnetic domains.
This factor (hysteresis loss) is proportional to frequency and flux density. Silicon steel alloy is used for the magnetic circuit to minimize hysteresis loss.
The changing magnetic flux also induces circulating currents (eddy currents) in the core material. Eddy current loss is proportional to the square of the frequency and the square of the flux density.
To minimize eddy currents, the core is constructed of laminations or layers of steel that are clamped or bonded together to form a single magnetic mass.
Subscribe to:
Post Comments (Atom)
Previous Articles
-
▼
2012
(166)
-
▼
February
(28)
- POWER TRANSFORMER PROTECTIVE MAINTENANCE BASICS AN...
- TRANSFORMER OIL CONTAINMENT BASICS AND TUTORIALS
- DISTRIBUTION TRANSFORMERS HARMONICS AND DC EFFECTS...
- CAN 60 HZ TRANSFORMERS BE OPERATED AT 50 HZ? BASIC...
- TRANSFORMER PARTS STORAGE GOOD PRACTICE BASICS AND...
- TRANSFORMER MINERAL INSULATING OIL HEALTH AND ENVI...
- TRANSFORMER OILS TESTING OF NEW OIL PROPERTIES BAS...
- INRUSH CURRENT CONSIDERATION FOR TRANSFORMERS BASI...
- POWER TRANSFORMER TEMPERATURE RISE TEST AT LOAD BE...
- TRANSFORMER BUSHINGS BASICS AND TUTORIALS
- TRANSFORMER LOSSES DEFINITION BASIC AND TUTORIALS
- MATCHING TRANSFORMERS FOR PARALLEL AND BANK OPERAT...
- EFFECTS OF SHORT CIRCUITS ON TRANSFORMERS BASICS A...
- EQUIVALENT CIRCUIT OF A THREEWINDING TRANSFORMER B...
- THREE WINDING TRANSFORMER BASIC INFORMATION What I...
- ADVANTAGES AND DISADVANTAGES OF THE AUTOTRANSFORME...
- POOR POWER QUALITY (PQ) EFFECTS ON TRANSFORMERS BA...
- BUCHHOLZ RELAY OR POWER TRANSFORMER BASICS AND TUT...
- THE SCOTT TRANSFORMER CONNECTION BASIC AND TUTORIALS
- TRANSFORMING THREE-PHASE VOLTAGES INTO TWO-PHASE V...
- PAD MOUNTED TRANSFORMERS SINGLE PHASE BASIC AND TU...
- POWER TRANSFORMER IMPACT RECORDER BASICS AND TUTOR...
- SINGLE PHASE TRANSFORMER POLARITY BASICS AND TUTOR...
- FERRORESONANCE AND DISTRIBUTION TRANSFORMER CONTRI...
- ZIGZAG CONNECTION OF TRANSFORMER BASICS AND TUTORIALS
- POWER TRANSFORMERS INSULATING LIQUIDS BASICS AND T...
- DIFFERENCE BETWEEN DRY TYPE AND LIQUID FILLED TRAN...
- TRANSFORMER FAILURE MODE BASICS AND TUTORIALS
-
▼
February
(28)

No comments:
Post a Comment