Showing posts with label Connection. Show all posts
Showing posts with label Connection. Show all posts

THREE-PHASE CONNECTIONS OF SINGLE-PHASE TRANSFORMERS BASIC INFORMATION AND TUTORIALS


Single-phase transformers can be connected to form three-phase transformer banks for stepping voltages up or down in three-phase systems. Four common configurations for connecting transformers in three-phase systems are delta–delta, wye–wye, wye–delta, and delta–wye.

The first three are shown in Fig. 3-9. The delta–wye is not shown because it is simply the reverse of the wye–delta connection.



Delta–delta connection
The delta–delta connection, shown in Fig. 3-9a, is widely used for moderate voltages. This connection has the advantage of remaining operational in what is known as the open delta or V connection if one transformer is damaged or taken out of service, leaving the remaining two functional.

If it is operated this way, the bank still delivers three-phase currents and voltages in their correct phase relationships. However, the capacity of the bank is reduced to 57.7 percent of the value obtained with all three transformers in service.

Wye–wye connection
In the wye–wye connection, shown in Fig. 3-9b, only 57.7 percent (or 1/1.73) of the line voltage is applied to each winding, but full line current flows in each transformer winding. The drawback to this connection is that power circuits supplied from a wye–wye bank generate serious electromagnetic interference, which could interrupt nearby communications circuits.

Because of this and other disadvantages, the wye–wye connection is seldom used. However, the wye–wye connection can be used to interconnect two delta systems and provide suitable neutrals for grounding both of them.

Delta–wye and wye–delta connections 
The delta–wye connection (not shown) is suitable for stepping up voltages because the voltage is increased by the transformer ratio multiplied by a factor of 1.73. Similarly, the wye–delta connection, shown in Fig. 3-9c, is used for stepping down voltages.

The high-voltage windings of most transformers operating at more than 100 kV are wye-connected. To match the polarities correctly in a wye connection, the H and X markings must be connected symmetrically.

In other words, if an H1 or X1 terminal is connected to the neutral, then all of the H1 or X1 terminals must be connected to the neutral and the remaining H2 or X2 terminals must be brought out as the line connections, as shown in Fig. 3-9b.

By contrast, in a delta connection, H1 must always be connected to H2 and X1 to X2, and the line connections must be made at these junctions, as shown in Fig. 3-9a.

When a large number of single-phase loads are to be served from a three-phase transformer bank, the wye connected low-voltage winding is recommended because the single-phase loads can be balanced evenly on all phases.

THREE (3) PHASE TO THREE (3) PHASE CONVERSION BASIC INFORMATION AND TUTORIALS


The delta-delta, the delta-Y, and the Y-Y connections are the most generally used; they are illustrated in figure below. The Y-delta and delta-delta connections may be used as step-up transformers for moderate voltages.

  
                      Standard 3-phase/3-phase transformer systems.
The Y-delta has the advantage of providing a good grounding point on the Y-connected side which does not shift with unbalanced load and has the further advantage of being free from third-harmonic voltages and currents; the delta-delta has the advantage of permitting operation in V in case of damage to one of the units.

Delta connections are not the best for transmission at very high voltage; they may, however, be associated at some point with other connections that provide  means for properly grounding the high voltage system; but it is better, on the whole, to avoid mixed systems of connections. The delta-Y step-up and Y-delta step-down connections are without question the best for high voltage transmission systems.

They are economical in cost, and provide a stable neutral whereby the high-voltage system may be directly grounded or grounded through resistance of such value as to damp the system critically and prevent the possibility of oscillation.

The Y-Y connection (or Y-connected autotransformer) may be used to interconnect two delta systems and provide suitable neutrals for grounding both of them. A Y-connected autotransformer may be used to interconnect two Y systems which already have neutral grounds, for reasons of economy.

In either case, a delta-connected tertiary winding is frequently provided for one or more of the following purposes. In stabilization of the neutral, if a Y-connected transformer (or autotransformer) with a delta connected tertiary is connected to an ungrounded delta system (or poorly grounded Y system), stability of the system neutral is increased.

That is, a single-phase short-circuit to ground on the transmission line will cause less drop in voltage on the short-circuited phase and less rise in voltage on the other two phases. A 3-phase three-leg Y-connected transformer without delta tertiary furnishes very little stabilization of the neutral, and the delta tertiary is generally needed.

Other Y connections offer no stabilization of the neutral without a delta tertiary. With increased neutral stabilization, the fault current in the neutral on single-phase short circuit is increased, and this may be needed for improved relay protection of the system.

Third-harmonic components of exciting current find a relatively low impedance path in a delta tertiary on a Y-connected transformer, and less of the third-harmonic exciting current appears in the connected transmission lines, where it might cause interference with communication circuits. Failure to provide a path for third-harmonic current in Y-connected 3-phase shell-type transformers or banks of single-phase transformers will result in excessive third-harmonic voltage from line to neutral.

The bank of a 3-phase, three-legged core-type Y-connected transformer acts as a delta winding with high impedance to the other windings. As a consequence, there is very little third-harmonic line-to-neutral voltage and a separate delta tertiary is not needed to reduce it. An external load can be supplied from a delta tertiary. This may include synchronous or static capacitors to improve system operating conditions.

DELTA – DELTA (ΔΔ) CLOSED / NEUTRAL = PRIM NO-SEC YES TRANSFORMER CONNECTION TUTORIALS AND BASIC INFORMATION


WHERE USED
For supplying three-phase, 240-volt loads with small amounts of 120/240-volt, single-phase load. No problem from third harmonic overvoltage or telephone interference. With a disabled unit, bank can be reconnected in open-delta for emergency service.

DELTA-DELTA FOR LIGHTING AND POWER
This connection is often used to supply a small single-phase lighting load and three-phase power load simultaneously. As shown is diagram, the mid-tap of the secondary of one transformer is grounded.

Thus, the small lighting load is connected across the transformer with the mid-tap and the ground wire common to both 120 volt circuits. The single-phase lighting load reduces the available three-phase capacity. This connection requires special watt-hour metering and is not available from all utilities.

DIAGRAM

BANK RATING
The transformer with the mid-tap carries 2/3 of the 120/240-volt, single-phase load and 1/3 of the 240-volt, three-phase load. The other two units each carry 1/3 of both the 120/240- and 240-volt loads.

CAUTION
High circulating currents will result unless all units are connected on same regulating taps and have same voltage ratios. Bank rating is reduced unless matching impedance transformers are used. The secondary neutral bushing can be grounded on only one of the three transformers.

IMPEDANCE
When three transformers are operated in a closed-delta bank, care should be taken to make certain the impedances of the three units are practically the same. Transformers having more than 10% difference in impedance rating should not be operated together in a closed-delta bank unless a reactor is used to increase the impedance of the unit having the lower impedance rating to a value equal to the other units.

If the voltage ratio of all three of the transformers is not the same, there will be a voltage tending to circulate current inside the delta. The current will be limited by the impedance of the three transformers considered as a series circuit.

It is a good practice, before applying voltage to three transformers in closed delta, to insert a fuse wire between the leads coming from the high-voltage bushings of two transformers closing the delta bank. The fuse wire should be of sufficient size to carry the exciting current of the transformers.

The use of this fuse wire offers a very simple means of making certain the transformers have the proper polarity.
This connection should not be used with CSP transformers if used to supply a combined three-phase and three-wire single-phase load due to unequal voltage division of single-phase load when the tapped transformer breaker is opened.

HIGH-LEG MARKING
NEC 2002: 110.15 High-Leg Marking.
On a 4-wire, delta-connected system where the midpoint of one phase winding is grounded to supply lighting and similar loads, the conductor or busbar having the higher phase voltage to ground shall be durably and permanently marked by an outer finish that is orange in color or by other effective means. Such identification shall be placed at each point on the system where a connection is made if the grounded conductor is also present.

NEC 2002 Handbook:
Added for the 2002 Code, this section now contains a requirement that appeared in 384-3(e) of the 1999 NEC. This requirement was moved to Article 110, where the application becomes a more general requirement.

The high leg is common on a 240/120-volt 3-phase, 4-wire delta system. It is typically designated as “B phase.” The high-leg marking is required to be the color orange or other similar effective means and is intended to prevent problems due to the lack of complete standardization where metered and non-metered equipment are installed in the same installation. Electricians should always test each phase relative to ground with suitable equipment to determine exactly where the high leg is located in the system.

ARRANGEMENT OF BUSBARS AND CONDUCTORS
NEC 2002: 408.3 / Support and Arrangement of Busbars and Conductors / (E) Phase Arrangement
The phase arrangement on 3-phase buses shall be A, B, C from front to back, top to bottom, or left to right, as viewed from the front of the switchboard or panelboard.

The B phase shall be that phase having the higher voltage to ground on 3-phase, 4-wire, delta-connected systems. Other busbar arrangements shall be permitted for additions to existing installations and shall be marked.

Exception: Equipment within the same single section or multisection switchboard or panelboard as the meter on 3-phase, 4-wire, delta-connected systems shall be permitted to have the same phase configuration as the metering equipment.

FPN: See 110.15 for requirements on marking the busbar or phase conductor having the higher voltage to ground where supplied from a 4-wire, delta-connected system.

NEC 2002 Handbook:
The high leg is common on a 240/120-volt, 3-phase, 4-wire delta system. It is typically designated as “B phase.” Section 110.15 requires the high-leg marking to be the color orange or other similar effective means of identification. Electricians should always test each phase to ground with suitable equipment in order to know exactly where this high leg is located in the system.

The exception to 408.3(E) permits the phase leg having the higher voltage to ground to be located at the right-hand position (C phase), making it unnecessary to transpose the panelboard or switchboard busbar arrangement ahead of and beyond a metering compartment. The exception recognizes the fact that metering compartments have been standardized with the high leg at the right position (C phase) rather than in the center on B phase.

See also 110.15, 215.8, and 230.56 for further information on identifying conductors with the higher voltage to ground. Other busbar arrangements for making additions to existing installations are permitted by 408.3(E).

POWER TRANSFORMER WINDING CONNECTION DIAGRAM


The actual winding connections are shown in a diagram with each winding and its taps labeled. A set of tables then specifies the voltage ratings, ampere ratings, and the connections for all the available taps. For transformers with load tap changing equipment, the connection diagrams and the accompanying tables are quite extensive.

The connection diagram usually also gives the general physical layout of the transformer, showing the placement of the bushings and the locations of current transformers (CTs) and a schematic representation of the load tap changing equipment, including the preventative autotransformer, moving contacts, arcing contacts, transfer switch, and reversing switch.

A portion of an actual nameplate that shows the winding connection diagram is illustrated in Figure 7.2. The nameplate depicted is rather interesting. The transformer has a load tap changer.

From the connection diagram we see that the buried tertiary is also a tapped winding that supplies a buck/boost voltage to the secondary windings through auxiliary transformers connected between the tertiary and the secondary.

Therefore, the tertiary simultaneously provides four important functions:

1. It provides a path for third harmonic currents.
2. It helps stabilize voltages in the Y-Y primary-secondary connection.
3. It provides a grounding bank action by providing a path for zero sequence currents.
4. It provides the necessary voltage taps for regulating the low-side voltage.

The only function that the buried tertiary cannot perform is to supply an external load. The voltage rating of the buried tertiary is not given because it cannot be connected to a system voltage, but one corner of the Δ connection is grounded internally.

This grounding is done so the winding potential voltage does not ‘‘float’’ because of capacitive coupling to the other windings. Without this ground connection, capacitively induced voltages are indeterminate and could be large enough to cause insulation damage.

The voltage taps for the primary and secondary are shown on the connection diagram and on the winding rating tables in Figure 7.2. These also specify which terminal numbers and letters are connected for each tap.

This transformer has a total of 14 current transformers that are used for metering, protective relaying, and other purposes. Note the CTs marked ‘‘LDC’’ and ‘‘WDG. TEMP.’’ The term LDC stands for line drop compensation. The LDC CT supplies metered line current to a compensating device in the voltage regulator controls.

The compensating device effectively moves the voltage control point into the system connected to the secondary winding. The CT labeled WDG.TEMP supplies current to the winding temperature gauges.

These gauges use a heating element surrounding a temperature probe mounted in the top oil in order to mimic the winding temperature. The ratios of these CTs would be shown on an actual nameplate, but this information is not shown in Figure 7.2.

Just below the connection diagram is a layout sketch showing the physical locations of the bushings, the load tap changing compartment and the operating handle for the tap changer at deenergized conditions. The load tap changer is represented schematically in the connection diagram.

Note the terminals labeled P1, P2, and P3. These terminals correspond to the connections to the preventative autotransformer. The two series arcing contacts per phase that are in series with the movable contacts are shown as well.

FIGURE 7.2 Part of a transformer’s nameplate showing the voltage ratings, MVA ratings, percent impedances, connection diagram, physical layout, vector diagram, tap connections, CT connections, and BIL ratings.

OPEN DELTA CONNECTION FOR LIGHT AND POWER BASIC AND TUTORIALS


Standard Connection
When the secondary circuits are to supply both light and power, the open-delta bank takes this form. In addition to the applications listed above for the open-delta bank for power, this type of bank is used where there is a large single-phase load and only a small three-phase load.


In this case, the two transformers would be of of different kva sizes, the one across which the lighting load is connected being the larger. This is also the connection that should be used when protected transformers are employed in a three-phase bank supplying both light and power.


Simplified Connection
This is similar to the connection above but gives a nonstandard 180° angular displacement. Otherwise the information given above is applicable to this connection.



EQUIVALENT CIRCUIT OF A THREEWINDING TRANSFORMER BASICS AND TUTORIALS

EQUIVALENT CIRCUIT OF A THREE WINDING TRANSFORMER BASIC INFORMATION
What Is The Equivalent Circuit Of A Three Winding Transformer?


Various forms of a three-winding transformer equivalent circuit have been proposed, but the simplest and most useful is the so-called T equivalent circuit, shown in Figure 4.9.


The magnetizing branch is omitted in the T equivalent since the magnetizing impedance is normally much greater than the series impedances. If voltages and impedances are expressed in per unit values, then the ideal transformers can sometimes be omitted also; however, in some cases 1:1 ideal transformers are retained so that the connections to the primary, secondary and tertiary circuits can be properly represented by the equivalent circuit.

In a three-winding transformer, eddy-current losses occur in each winding from stray flux produced by the other two windings, even if the third winding is not carrying any load. Therefore, each series resistance element in the T equivalent circuit of a three-winding transformer represent eddy-current losses produced by currents in other windings.

Hence, a series resistance does not belong to any particular winding but is distributed among all three widings. To derive the series impedance values in the T equivalent circuit, impedance measurements are made of each pair of windings taken two at a time.

One winding is short-circuited with voltage applied to the other winding while the third winding is open-circuited. The current is measured through the winding with the applied voltage. The impedance is equal to the applied voltage divided by that current.

The test setup to measure the impedance between the H and X windings of a single-phase three-winding transformer is shown in Figure 4.10.


The test for a three-phase, three-winding transformer is similar except that three-phase voltages are used. There are three sets of measurements taken. 

The first set of measurements applies a three-phase voltage to the H1, H2, and H3 terminals with the X1, X2, and X3 terminals shorted together and the Y1, Y2, and Y3 terminals open. 

The second set of measurements applies a three-phase voltage to the H1, H2, and H3 terminals with the Y1, Y2, and Y3 terminals shorted together and the X1, X2, and X3 terminals open. 

Finally, a three-phase voltage is applied to the X1, X2 and X3 terminals with the Y1, Y2, and Y3 terminals shorted together with the H1, H2, and H3 terminals open. The ZHX, ZHY, and ZXY impedance values are determined by dividing the voltages by the currents in each test. 

THREE WINDING TRANSFORMER BASIC INFORMATION
What Is Three Winding Transformer?


The three-winding transformer is a subset of multiwinding transformers. In addition to the usual primary and secondary windings, a third tertiary winding is added to each phase. Having three winding can serve several purposes:

• Three windings allow connecting three systems together where each system has a different operating voltage.

• Three windings provide electrical isolation between dual input circuits or dual output circuits having the same operating voltage.

• If the third winding is Δ-connected, this can stabilize voltages, supply third harmonic currents to magnetize the transformer core, filter third harmonics from the system, and provide grounding bank action when the primary and secondary windings are both Y-connected.

Sometimes a tertiary winding may serve more than one function at the same time. For example, a 13.8 kV Δ-connected tertiary winding on a 230 kV– 69 kV Grd.Y-Grd.Y transformer helps to stabilize the primary and secondary voltages, provides grounding bank action to partially shield the primary circuit from secondary ground currents, and provides 13.8 kV supply voltage to a station-service auxiliary transformer.

(Note: When a group of windings are connected in parallel to increase the current capability of a secondary winding, the parallel group is considered one winding and not several separate windings. Using multiple sets of low-voltage windings in parallel is common in large generator step-up transformers; however, these are still considered two winding transformers.)

Sometimes a tertiary winding is intended only to magnetically interact with the primary and secondary windings so it may not have any external terminal connections. In these cases, the tertiary winding is said to be an imbedded tertiary.

Imbedded tertiary windings are found only in three-phase transformers and are always Δ-connected. One corner of the Δ-connected imbedded tertiary winding is sometimes grounded internally to limit capacitively coupled voltages.

For single-phase transformers, the standard labels for the tertiary bushings are Y1 and Y2. For three-phase transformers, the standard labels for the tertiary bushings are (Y0), Y1, Y2, Y3.

ADVANTAGES AND DISADVANTAGES OF THE AUTOTRANSFORMER CONNECTION

AUTOTRANSFORMERS CONNECTION ADVANTAGES AND DISADVANTAGES
What Are The Advantages And Disadvantages Of Autotransformer Connection?


Summarizing the advantages of the autotransformer connection:

 • There are considerable savings in size and weight.

• There are decreased losses for a given KVA capacity.


• Using an autotransformer connection provides an opportunity for achieving lower series impedances and better regulation.

Summarizing the disadvantages of the autotransformer connection:

• The autotransformer connection is not available with certain threephase connections.

• Higher (and possibly more damaging) short-circuit currents can result from a lower series impedance.

• Short circuits can impress voltages significantly higher than operating voltages across the windings of an autotransformer.

• For the same voltage surge at the line terminals, the impressed and induced voltages are greater for an autotransformer than for a two winding transformer.

In many instances, the advantages of the autotransformer connection outweigh its disadvantages.

For example, when very large MVA capability is required and where a Grd.Y-Grd.Y connection is suitable, an autotransformer is usually the design of choice.

Because an autotransformer cannot provide a Δ-Y connection, autotransformers are not suitable for use as generator step-up transformers.

ZIGZAG CONNECTION OF TRANSFORMER BASICS AND TUTORIALS

ZIGZAG TRANSFORMER CONNECTION BASIC INFORMATION
What Is Zigzag Transformer? What Is Zigzag Connection Of Transformers?


The zigzag connection is also called the interconnected star connection. This connection has some of the features of the Y and the Δ connections, combining the advantages of both. The zigzag connection is a three-phase connection and is constructed as shown in Figure 2.14.


There are three pairs of windings, each having a 1:1 turns ratio. The left-hand set of windings shown in the
figure is a conventional Y connection, a′-b′-c′, with the neutral N brought out.

The open ends of the Y are electrically connected to the right-hand set of windings as follows: a′ connects to the right-hand winding paired with to the b′-N winding, b′ connects to the right-hand winding paired to c′-N winding, and c′ connects to the right-hand winding paired to the a′-N winding.

The opposite ends of the right-hand windings are brought out as the phase terminals a, b, and c. The vector diagram shown on the right of Figure 2.14 makes it is obvious why this is called a zigzag connection. It operates on the following principle:


If three currents, equal in magnitude and phase, are applied to the three terminals, the ampere-turns of the a′-N winding cancel the ampere-turns of the c′- c winding, the ampere-turns of the b′-N winding cancel the ampere turns of the a′-a winding, and the ampere-turns of the c′-N winding cancel the ampere turns of the b′-b winding. Therefore, the transformer allows the three in-phase currents to easily flow to neutral.

If three currents, equal in magnitude but 120° out of phase with each other, are applied to the three terminals, the ampere-turns in the windings cannot cancel and the transformer restricts the current flow to the negligible level of magnetizing current.

Therefore, the zigzag winding provides an easy path for in-phase currents but does not allow the flow of currents that are 120° out of phase with each other.

The ability to provide a path for in-phase currents enables us to use the zigzag connection as a grounding bank, which is one of the main applications for this connection. If a zigzag winding is used as a secondary winding with a Δ winding used as a primary winding, the Δ-zigzag connection is created, as show nin Figure 2.15.


AΔ-zigzag transformer is technically not a two-winding transformer but rather a three-winding transformer because three separate windings are wound around each core leg.  Since two of the sets of windings are interconnected, we treat the Δ-zigzag as if it were a two-winding transformer.

As usual, the sets of windings that are magnetically linked on common core legs are drawn in parallel to each other, as shown in Figure 2.15.

The Δ-zigzag connection provides the same advantages as the Δ-Y connection, like third harmonic suppression and ground current isolation. One added advantage is that there is no phase angle displacement between the primary and the secondary circuits with this connection; therefore, the Δ-zigzag connection can be used in the same manner as Y-Y and Δ-Δ transformers without introducing any phase shifts in the circuits.

Previous Articles