Showing posts with label Insulating Liquids. Show all posts
Showing posts with label Insulating Liquids. Show all posts

INSULATION CLASSES OF POWER TRANSFORMER BASIC INFORMATION AND TUTORIALS

The type of insulation used in dry-type–transformer design and construction has a definite bearing on the size and operating temperature of the unit. Currently four classes of insulation, each having a separate NEMA specification and temperature limit, are being used.

A look at these will facilitate selection of the proper unit to meet prescribed installation and operating conditions.

1. Class 130 insulation-system transformers. When properly applied and loaded in an ambient not over 40 C, these transformers will operate at not more than a 60 C temperature rise on the winding.

These units can be used as control-type transformers when higher temperatures might affect other temperature-sensitive devices in the enclosure or as distribution transformers in locations (textile mills, sawmills, etc.) where combustible flyings might be present in the surrounding atmosphere.

2. Class 150 insulation-system transformers. These units have a higher-temperature insulating system and are physically smaller and about half the weight of Class A units of corresponding rated capacities. When properly loaded to rated kilovolt-amperes and installed in an ambient not over 40 C,

Class 150 units will operate at a maximum 80 C rise on the winding. For years dry-type distribution transformers have been of the Class 150 type.

3. Class 200 insulation-system transformers. These units also have a high-temperature insulating system and, when properly loaded and applied in an ambient not over 40 C, will operate at no more than 130 C rise on the winding.

The units are smaller in size than similarly rated Class 150 units and currently are available from a number of manufacturers in ratings of 25 kVA and lower, both single- and three-phase design. One manufacturer designs in-wall, flush-mounted dry-type transformers as Class 200 units.

4. Class 220 insulation-system transformers. These units are insulated with a high temperature system of glass, silicone, and asbestos components and are probably the most compact ones available.

When properly loaded and applied in an ambient not over 40 C, Class 220 transformers will operate at a maximum 150 C rise on the winding. This class of insulation is used primarily in designs in which the core and coil are completely enclosed in a ventilated housing.

Generally, this stipulation covers units with ratings of 30 kVA and larger. Some experts recommend that the hottest spot on the metal enclosure be limited to a maximum rise of 40 C above a 40 C ambient. It should be noted that Class 150 insulation is being replaced with Class 200 or 220 insulation in transformers of recent design.

Another significant factor which concerns all dry-type transformers is that they should never be overloaded. The way to avoid this is to size the primary or secondary overcurrent device as close as possible to the full-load primary or secondary current for other than motor loads.

If close overcurrent protection has not been provided, loads should be checked periodically. Overloading a transformer causes excessive temperature, which, in turn, produces overheating. This results in rapid deterioration of the insulation and will cause complete failure of the transformer coils.

OIL IMMERSED TRANSFORMER INSULATION VALUE BASIC AND TUTORIALS

(Standard Handbook for Electrical Engineers), is depended on very largely to help insulate the transformer; this is done by providing liberal oil ducts between coils and between groups of coils, in addition to the solid insulation. The oil ducts thus serve the double purpose of insulating and cooling the windings.

Since the oil is a very important part of the insulation, every effort is made in modern transformers to preserve both its insulating and cooling qualities. Oxidation and moisture are the chief causes of deterioration.

Oil takes into solution about 15 percent by volume of whatever gas is in contact with it. In the open-type transformer, oil rapidly darkens, owing to the effects of oxygen in solution in the oil and the oxygen in contact with the top surface of the hot oil.

1. Expansion tank (or conservator). One of the first devices used to reduce oxidation was the expansion tank (or conservator), which consisted of a small tank mounted above and connected with the main tank by means of a constricted connection so that the small tank could act as a reservoir to take up the expansion and contraction of the oil due to temperature changes and reduce the oil surface exposed to air.

2. Inertaire transformer. This transformer has the space above the oil in the tank filled with a cushion of inert gas which is mostly nitrogen. The nitrogen atmosphere is initially blown in from a cylinder of compressed nitrogen and is thereafter maintained by passing the inbreathing air through materials which remove the moisture and the oxygen, permitting dry nitrogen to pass into the case.

A breathing regulator, which consists of a mercury U tube with unequal legs, allows inbreathing of nitrogen when the pressure in the case is only slightly below atmospheric, but prevents outbreathing unless the pressure in the case becomes 5 psi (34,474 Pa) higher than atmospheric pressure.

The elimination of oxygen from within the transformer case eliminates the oxidation of the oil and prevents fire and secondary explosion within the case.

POWER TRANSFORMERS INSULATING LIQUIDS BASICS AND TUTORIALS

POWER TRANSFORMERS INSULATING LIQUIDS BASIC INFORMATION
What Are The Insulating Liquids Of Power Transformers?


Insulating Liquids
Dielectric liquids of various types are used as an insulating medium as well as a means of cooling liquid-filled transformers. Common insulating liquids include the following:

Mineral oil. A mineral oil-filled transformer is generally the smallest, lightest, and most economical transformer available. Mineral oil has excellent properties for use in transformers, but it has the inherent weakness of being flammable. Its use, therefore, is restricted to outdoor installations or when the transformer is installed within a vault if used indoors.

Silicone. A wide variety of synthetic polymer chemicals are referred to by the generic term silicone. Silicone transformer liquids are actually known chemically as polydimethylsiloxane (PDMS). PDMS is a water-clear, odorless, chemically stable, nontoxic liquid.

High-molecular-weight hydrocarbon (HMWH). HMWH is another high-firepoint dielectric that is widely used as a transformer liquid. It has similar values for dielectric strength and dielectric constant, power factor, and thermal conductivity as mineral oil.

There are no established standards for testing the fire safety of transformers. Factory Mutual Research (FM) and Underwriters Laboratories (UL) both have different criteria for listing transformer liquids. Fire properties of dielectric fluids are typically classified by the following characteristics.

• Flash point: the temperature at which vapors from a liquid surface will ignite in the presence of a flame.
• Fire point: the temperature at the surface of a liquid that will sustain a fire.
• Flame spread: a series of consecutive ignitions.
• Ease of ignition: how readily the liquid will generate and maintain a flammable fuel/vapor mixture at the surface.
• Heat release rate: the product of vaporization rate and the heat of combustion of the fluid. The higher this rate in a large-scale fire, the higher the degree of fire hazard.

Selection of the dielectric liquid depends on the transformer application. Normally, the choice is mineral oil if the device is to be located outdoors.

The National Electrical Code (NEC) does, however, specify certain limitations regarding the use of oil filled transformers in particular outdoor locations. The selection of less-flammable liquids (PDMS and HMWH) often depends upon personal preference, the liquid used in other transformers on the site, or the transformer manufacturer's recommendation.

Previous Articles