Showing posts with label cooling classes. Show all posts
Showing posts with label cooling classes. Show all posts

DISTRIBUTION TRANSFORMER COOLANTS BASIC AND TUTORIALS

DISTRIBUTION TRANSFORMER COOLANTS BASIC INFORMATION
What Are The Different Distribution Transformer Coolants?


Mineral Oil
Mineral oil surrounding a transformer core-coil assembly enhances the dielectric strength of the winding and prevents oxidation of the core. Dielectric improvement occurs because oil has a greater electrical withstand than air and because the dielectric constant of oil is closer to that of the insulation.

As a result, the stress on the insulation is lessened when oil replaces air in a dielectric system. Oil also picks up heat while it is in contact with the conductors and carries the heat out to the tank surface by self convection. Thus a transformer immersed in oil can have smaller electrical clearances and smaller conductors for the same voltage and kVA ratings.

Askarels
Beginning about 1932, a class of liquids called askarels or polychlorinated biphenyls (PCB) was used as a substitute for mineral oil where flammability was a major concern. Askarel-filled transformers could be placed inside or next to a building where only dry types were used previously.

Although these coolants were considered nonflammable, as used in electrical equipment they could decompose when exposed to electric arcs or fires to form hydrochloric acid and toxic furans and dioxins.
The compounds were further undesirable because of their persistence in the environment and their ability to accumulate in higher animals, including humans. Testing by the U.S. Environmental Protection

Agency has shown that PCBs can cause cancer in animals and cause other noncancer health effects. Studies in humans provide supportive evidence for potential carcinogenic and noncarcinogenic effects of PCBs (http://www.epa.gov). The use of askarels in new transformers was outlawed in 1977 (Claiborne, 1999).

Work still continues to retire and properly dispose of transformers containing askarels or askarel-contaminated mineral oil. Current ANSI/IEEE standards require transformer manufacturers to state on the nameplate that new equipment left the factory with less than 2 ppm PCBs in the oil (IEEE, 2000).

High-Temperature Hydrocarbons
Among the coolants used to take the place of askarels in distribution transformers are high-temperature hydrocarbons (HTHC), also called high-molecular-weight hydrocarbons.

These coolants are classified by the National Electric Code as “less flammable” if they have a fire point above 300˚C.

The disadvantages of HTHCs include increased cost and a diminished cooling capacity from the higher viscosity that accompanies the higher molecular weight.

POWER TRANSFORMERS COOLING CLASSES BASICS AND TUTORIALS

COOLING CLASSES OF POWER TRANSFORMERS BASIC INFORMATION
What Are The Cooling Classes of Power Transformers?


Since no transformer is truly an “ideal” transformer, each will incur a certain amount of energy loss, mainly that which is converted to heat. Methods of removing this heat can depend on the application, the size of the unit, and the amount of heat that needs to be dissipated.

The insulating medium inside a transformer, usually oil, serves multiple purposes, first to act as an insulator, and second to provide a good medium through which to remove the heat.

The windings and core are the primary sources of heat, although internal metallic structures can act as a heat source as well. It is imperative to have proper cooling ducts and passages in the proximity of the heat sources through which the cooling medium can flow so that the heat can be effectively removed from the transformer.

The natural circulation of oil through a transformer through convection has been referred to as a “thermosiphon” effect. The heat is carried by the insulating medium until it is transferred through the transformer tank wall to the external environment.

Radiators, typically detachable, provide an increase in the surface area available for heat transfer by convection without increasing the size of the tank. In smaller transformers, integral tubular sides or fins are used to provide this increase in surface area.

Fans can be installed to increase the volume of air moving across the cooling surfaces, thus increasing the rate of heat dissipation. Larger transformers that cannot be effectively cooled using radiators and fans rely on pumps that circulate oil through the transformer and through external heat exchangers, or coolers, which can use air or water as a secondary cooling medium.

Allowing liquid to flow through the transformer windings by natural convection is identified as “nondirected flow.” In cases where pumps are used, and even some instances where only fans and radiators are being used, the liquid is often guided into and through some or all of the windings. This is called “directed flow” in that there is some degree of control of the flow of the liquid through the windings.

The use of auxiliary equipment such as fans and pumps with coolers, called forced circulation, increases the cooling and thereby the rating of the transformer without increasing the unit’s physical size. Ratings are determined based on the temperature of the unit as it coordinates with the cooling equipment that
is operating.

Usually, a transformer will have multiple ratings corresponding to multiple stages of cooling, as the supplemental cooling equipment can be set to run only at increased loads.

Methods of cooling for liquid-immersed transformers have been arranged into cooling classes identified
by a four-letter designation as follows:
Table 2.1.2 lists the code letters that are used to make up the four-letter designation.

This system of identification has come about through standardization between different international standards organizations and represents a change from what has traditionally been used in the U.S. Where OA classified a transformer as liquid-immersed self-cooled in the past, it is now designated by the new
system as ONAN. 

Similarly, the previous FA classification is now identified as ONAF. FOA could be OFAF or ODAF, depending on whether directed oil flow is employed or not. In some cases, there are transformers with directed flow in windings without forced circulation through cooling equipment.
An example of multiple ratings would be ONAN/ONAF/ONAF, where the transformer has a base rating where it is cooled by natural convection and two supplemental ratings where groups of fans are turned on to provide additional cooling so that the transformer will be capable of supplying additional kVA. This rating would have been designated OA/FA/FA per past standards.

Previous Articles