POWER TRANSFORMER | DISTRIBUTION TRANSFORMER | TRANSFORMER DESIGN | TRANSFORMER PRINCIPLES | TRANSFORMER THEORY | TRANSFORMER INSTALLATION | TRANSFORMER TUTORIALS
Showing posts with label Booster Transformer. Show all posts
Showing posts with label Booster Transformer. Show all posts
BOOSTER TRANSFORMERS CONNECTION & OPERATION BASIC AND TUTORIALS
Ordinary distributing transformers applied as illustrated (Fig. 1) are used when it is necessary to raise, by a fixed percentage, the voltage delivered by a line, as it is when transformer ratios do not give quite the right voltage or when line drop is excessive.
Fig. 1 Boosting transformers.
A booster raises the voltage of any primary circuit in which it may be inserted by the amount of the secondary voltage of the booster (see Fig.1).
EXAMPLE
On a long single-phase 2080-V lighting branch so heavily loaded that the pressure drops more than the amount for which the normal regulation of the feeder will compensate, a 110-V transformer inserted in the line as a booster will raise the pressure of the primary branch on the load side of the booster by 110 V.
This raises the secondary pressure 5.5 percent on all the transformers beyond the booster. With 440-V service supplied by star-connected 230-V transformers, a 10 percent booster in each phase raises the normal pressure of 230/400 V to 253/440 V.
The connections for a simple booster are shown in Fig. 1, I, the line pressure being raised from 2080 to 2184 V, or 5 percent. The connection at II is that for an augmented booster in which the line pressure is raised from 2080 to 2190 V, because the primary of the booster is connected across the line on the far side and the booster is boosted as well as the line.
This gives an increase of 5.5 percent in the line pressure. Figure 1, II, shows a 10 percent simple booster and IV an augmented 11.1 percent booster.
The transformers shown in Fig.1 have a 10:1 or 20:1 ratio, and the percentages shown apply only to transformers of this ratio. If boosters having a ratio of 2080 to 115/230 are used, the percentages are increased by about 10 percent. Figure 1, I, would then become 5.5 percent; II, 6.05 percent; III, 11.1 percent; and IV, 12.2 percent.
Subscribe to:
Comments (Atom)
Previous Articles
-
▼
2025
(162)
-
▼
December
(39)
- MASTERING SIMULATION IN ELECTRONIC DESIGN: A COMPR...
- UNDERSTANDING THE LIMITATIONS AND POTENTIAL OF CIR...
- MASTERING OSCILLOSCOPES AND LOGIC ANALYZERS: A COM...
- MASTERING OSCILLOSCOPES: A GUIDE FOR ELECTRICAL EN...
- UNDERSTANDING MULTIMETERS AND OSCILLOSCOPES: A COM...
- MASTERING ELECTRICAL ENGINEERING: THE ESSENTIAL TO...
- UNDERSTANDING CONSTANT CURRENT SOURCES IN ELECTRON...
- INNOVATIVE CIRCUITS: ENHANCING ELECTRONIC DESIGN W...
- OPTIMIZING PRODUCT DESIGN THROUGH MODULARIZATION A...
- ENGINEERING DESIGN: ADAPTING TO CHANGE IN A DYNAMI...
- ENSURING ROBUSTNESS IN ELECTRONIC DESIGN: A COMPRE...
- DESIGNING ROBUST ELECTRONIC SYSTEMS: NAVIGATING IN...
- UNDERSTANDING COMPONENT ERRORS IN ELECTRONIC DESIGN
- UNDERSTANDING ALTERNATING CURRENT: A DEEP DIVE INT...
- UNDERSTANDING ELECTRICITY: THE SCIENCE BEHIND CURR...
- UNDERSTANDING THEVENIN'S THEOREM: A DEEP DIVE INTO...
- UNDERSTANDING THEVENIN’S THEOREM: A KEY TOOL IN CI...
- MASTERING ELECTRICAL CIRCUITS: THE POWER OF THEVEN...
- MASTERING ELECTRICAL FUNDAMENTALS: A DEEP DIVE INT...
- UNDERSTANDING TIME CONSTANTS IN ELECTRONICS: THE K...
- UNDERSTANDING VOLTAGE DIVIDERS AND RC CIRCUITS IN ...
- UNDERSTANDING ELECTRICAL IMPEDANCE: THE FOUNDATION...
- MASTERING OHM'S LAW: THE CORNERSTONE OF ELECTRICAL...
- MASTERING THE FUNDAMENTALS: WHY BASIC PRINCIPLES A...
- MASTERING THE FUNDAMENTALS: THE LEGO APPROACH TO E...
- MASTERING ELECTRONIC CIRCUITS: THE PATH TO INTUITI...
- INTUITIVE SIGNAL ANALYSIS: MASTERING THE ART OF PR...
- UNDERSTANDING OSCILLATION IN ELECTRICAL AND MECHAN...
- UNDERSTANDING ELECTRICAL COMPONENTS: A DEEP DIVE I...
- MASTERING ESTIMATION IN ENGINEERING: A CRUCIAL SKI...
- MASTERING UNIT CONVERSIONS: A CRUCIAL SKILL FOR EV...
- UNLOCKING THE MAGIC OF ELECTRICITY: A GUIDE TO UND...
- UNDERSTANDING ELECTRICITY: THE DYNAMIC FORCE BEHIN...
- UNDERSTANDING ELECTRICITY: VOLTAGE, CURRENT, AND T...
- UNDERSTANDING ELECTRICITY: A DEEP DIVE INTO CHARGE...
- UNDERSTANDING ATOMIC STRUCTURE: CHARGE AND ELECTRO...
- UNDERSTANDING ELECTRICITY: A JOURNEY THROUGH ATOMS...
- MASTERING ENGINEERING PRINCIPLES: A GUIDE FOR STUD...
- UNLOCKING THE POWER OF ELECTRICAL ENGINEERING: A G...
-
▼
December
(39)
