Showing posts with label Design. Show all posts
Showing posts with label Design. Show all posts

POWER TRANSFORMER DESIGN VARIABLES BASICS


Our basic design variables are:

(1) B Core flux density in Tesla
(2) Js OA current density in the secondary or LV winding in kAmps/ in2
(3)Re Core radius in inches
(4)g HV-LV gap in inches
(5)Rs Mean radius of the secondary or LV winding in inches
(6)Rp Mean radius of the primary or HV winding in inches
(7)hs Height of the secondary winding in inches
(8)ts Thickness (radial build) of the secondary winding in inches
(9)tp Thickness (radial build) of the primary winding in inches
(10)Mc Weight of the core steel in kilo-pounds
(11)Mt Weight of the tank in kilo-pounds

Note that the last two weights can be expressed in terms of the othe design variables. However, since some of the material and labor costs and losses are easily expressed in terms of them, we find it convenient to include them in the set of basic design variables.

Their dependence on the other variables will be expressed in terms of equality constraints. The units chosen for the above variables are such that their magnitudes are all in the range of about 1 to 100.

These units are used internally in the computer optimization program. As far as input and output is concerned, i.e. what the user deals with, the units are a matter of familiarity and can differ from the above.

We have not considered the height of the primary winding a design variable since, in our designs, it is usually taken to be an inch shorter then the secondary winding.

We express this as hp=αhs, where hp is the height of the primary winding and α is a fraction ≈0.95. gc and go are gaps which are fixed and inputted by the user, gc depends on whether a tertiary or tap winding is present under the LV winding and go depends on the phase to phase voltages.

H is the window height and T the window width. X is the maximum stack width ≈2Rc. These are expressible in terms of the other variables.

TRANSFORMER CORE DESIGN AND CONSTRUCTION BASICS AND TUTORIALS

TRANSFORMER CORE DESIGN AND CONSTRUCTION BASIC INFORMATION
Transformer Core Design and Construction: A Tutorial 


Air gaps in a magnetic core will add considerable reluctance to the magnetic circuit. Remembering that the inductance of a coil and the magnetic reluctance are inversely proportional, air gaps reduce the inductance of the coil and increase the magnitude of magnetizing currents. In practical transformers, we want to reduce magnetizing currents to almost negligible levels; it is therefore important to eliminate all air gaps if possible.

One approach would be to make the core from a solid block of material. This is impractical from the standpoint of fabricating the transformer, since the coils would have to be wound through the core window.


Also, since metallic core materials conduct electric current as well as magnetic flux, the induced voltages would produce large circulating currents in a solid core. The circulating currents would oppose the changing flux and effectively ‘‘short out’’ the transformer.


A practical solution is to fabricate the core from thin laminated steel sheets that are stacked together and to coat the surfaces of the laminations with a thin film that electrically insulates the sheets from each other. Steel not only has excellent magnetic properties but is also relatively inexpensive and easy to fabricate into thin sheets.


In a modern transformer plant, steel ribbon is cut into sections by a cutting/punching machine commonly called a Georg machine. The sizes and shapes of the sections are determined by the core design of the individual transformer.

The thickness of the sheets varies somewhat; core laminations operating at 60 Hz are between 0.010 and 0.020 in. thick, with 0.012 in. being the most common thickness in use today.


Different methods of stacking core steel have been used in the past. One such method is called the butt lap method using rectangular core sections and is illustrated in Figure 1.11


Even if the edges of the segments do not butt together perfectly, as shown in the exaggerated edge view at the bottom of the figure, the alternating even and odd layers assure that the magnetic flux has a continuous path across the surfaces of the adjacent layers.

POWER TRANSFORMERS COOLING CLASSES BASICS AND TUTORIALS

COOLING CLASSES OF POWER TRANSFORMERS BASIC INFORMATION
What Are The Cooling Classes of Power Transformers?


Since no transformer is truly an “ideal” transformer, each will incur a certain amount of energy loss, mainly that which is converted to heat. Methods of removing this heat can depend on the application, the size of the unit, and the amount of heat that needs to be dissipated.

The insulating medium inside a transformer, usually oil, serves multiple purposes, first to act as an insulator, and second to provide a good medium through which to remove the heat.

The windings and core are the primary sources of heat, although internal metallic structures can act as a heat source as well. It is imperative to have proper cooling ducts and passages in the proximity of the heat sources through which the cooling medium can flow so that the heat can be effectively removed from the transformer.

The natural circulation of oil through a transformer through convection has been referred to as a “thermosiphon” effect. The heat is carried by the insulating medium until it is transferred through the transformer tank wall to the external environment.

Radiators, typically detachable, provide an increase in the surface area available for heat transfer by convection without increasing the size of the tank. In smaller transformers, integral tubular sides or fins are used to provide this increase in surface area.

Fans can be installed to increase the volume of air moving across the cooling surfaces, thus increasing the rate of heat dissipation. Larger transformers that cannot be effectively cooled using radiators and fans rely on pumps that circulate oil through the transformer and through external heat exchangers, or coolers, which can use air or water as a secondary cooling medium.

Allowing liquid to flow through the transformer windings by natural convection is identified as “nondirected flow.” In cases where pumps are used, and even some instances where only fans and radiators are being used, the liquid is often guided into and through some or all of the windings. This is called “directed flow” in that there is some degree of control of the flow of the liquid through the windings.

The use of auxiliary equipment such as fans and pumps with coolers, called forced circulation, increases the cooling and thereby the rating of the transformer without increasing the unit’s physical size. Ratings are determined based on the temperature of the unit as it coordinates with the cooling equipment that
is operating.

Usually, a transformer will have multiple ratings corresponding to multiple stages of cooling, as the supplemental cooling equipment can be set to run only at increased loads.

Methods of cooling for liquid-immersed transformers have been arranged into cooling classes identified
by a four-letter designation as follows:
Table 2.1.2 lists the code letters that are used to make up the four-letter designation.

This system of identification has come about through standardization between different international standards organizations and represents a change from what has traditionally been used in the U.S. Where OA classified a transformer as liquid-immersed self-cooled in the past, it is now designated by the new
system as ONAN. 

Similarly, the previous FA classification is now identified as ONAF. FOA could be OFAF or ODAF, depending on whether directed oil flow is employed or not. In some cases, there are transformers with directed flow in windings without forced circulation through cooling equipment.
An example of multiple ratings would be ONAN/ONAF/ONAF, where the transformer has a base rating where it is cooled by natural convection and two supplemental ratings where groups of fans are turned on to provide additional cooling so that the transformer will be capable of supplying additional kVA. This rating would have been designated OA/FA/FA per past standards.

POWER TRANSFORMERS RATING BASICS AND TUTORIALS

RATING OF POWER TRANSFORMERS
What Are The Basic Rating of Power Transformers?


Power Transformer Rating

In the U.S., transformers are rated based on the power output they are capable of delivering continuously at a specified rated voltage and frequency under “usual” operating conditions without exceeding prescribed internal temperature limitations.

Insulation is known to deteriorate with increases in temperature, so the insulation chosen for use in transformers is based on how long it can be expected to last by limiting the operating temperature.

The temperature that insulation is allowed to reach under operating conditions essentially determines the output rating of the transformer, called the kVA rating. Standardization has led to temperatures within a transformer being expressed in terms of the rise above ambient temperature, since the ambient temperature can vary under operating or test conditions.

Transformers are designed to limit the temperature based on the desired load, including the average temperature rise of a winding, the hottest-spot temperature rise of a winding, and, in the case of liquid-filled units, the top liquid temperature rise.

To obtain absolute temperatures from these values, simply add the ambient temperature. Standard temperature limits for liquid-immersed power transformers are listed in Table 2.1.1.
The normal life expectancy of a power transformer is generally assumed to be about 30 years of service when operated within its rating. However, under certain conditions, it may be overloaded and operated beyond its rating, with moderately predictable “loss of life.”

Situations that might involve operation beyond rating include emergency rerouting of load or through-faults prior to clearing of the fault condition.

Outside the U.S., the transformer rating may have a slightly different meaning. Based on some standards, the kVA rating can refer to the power that can be input to a transformer, the rated output being equal to the input minus the transformer losses.

Power transformers have been loosely grouped into three market segments based on size ranges. These
three segments are:

1. Small power transformers: 500 to 7500 kVA
2. Medium power transformers: 7500 to 100 MVA
3. Large power transformers: 100 MVA and above

Note that the upper range of small power and the lower range of medium power can vary between 2,500 and 10,000 kVA throughout the industry.

It was noted that the transformer rating is based on “usual” service conditions, as prescribed by standards. Unusual service conditions may be identified by those specifying a transformer so that the desired performance will correspond to the actual operating conditions.

Unusual service conditions include, but are not limited to, the following: high (above 40˚C) or low (below –20˚C) ambient temperatures, altitudes above 1000 m above sea level, seismic conditions, and loads with total harmonic distortion above 0.05 per unit.

POWER TRANSFORMERS MANUFACTURING VIDEO (ABB TRANSFORMERS)

MANUFACTURING VIDEO OF POWER TRANSFORMERS
A Video On How Power Transformers Are Manufactured?

This is a video courtesy of ABB on how to manufacture, assemble, produce Power Transformers.

Previous Articles