THREE WINDING TRANSFORMER BASIC INFORMATION
What Is Three Winding Transformer?
The three-winding transformer is a subset of multiwinding transformers. In addition to the usual primary and secondary windings, a third tertiary winding is added to each phase. Having three winding can serve several purposes:
• Three windings allow connecting three systems together where each system has a different operating voltage.
• Three windings provide electrical isolation between dual input circuits or dual output circuits having the same operating voltage.
• If the third winding is Δ-connected, this can stabilize voltages, supply third harmonic currents to magnetize the transformer core, filter third harmonics from the system, and provide grounding bank action when the primary and secondary windings are both Y-connected.
Sometimes a tertiary winding may serve more than one function at the same time. For example, a 13.8 kV Δ-connected tertiary winding on a 230 kV– 69 kV Grd.Y-Grd.Y transformer helps to stabilize the primary and secondary voltages, provides grounding bank action to partially shield the primary circuit from secondary ground currents, and provides 13.8 kV supply voltage to a station-service auxiliary transformer.
(Note: When a group of windings are connected in parallel to increase the current capability of a secondary winding, the parallel group is considered one winding and not several separate windings. Using multiple sets of low-voltage windings in parallel is common in large generator step-up transformers; however, these are still considered two winding transformers.)
Sometimes a tertiary winding is intended only to magnetically interact with the primary and secondary windings so it may not have any external terminal connections. In these cases, the tertiary winding is said to be an imbedded tertiary.
Imbedded tertiary windings are found only in three-phase transformers and are always Δ-connected. One corner of the Δ-connected imbedded tertiary winding is sometimes grounded internally to limit capacitively coupled voltages.
For single-phase transformers, the standard labels for the tertiary bushings are Y1 and Y2. For three-phase transformers, the standard labels for the tertiary bushings are (Y0), Y1, Y2, Y3.
POWER TRANSFORMER | DISTRIBUTION TRANSFORMER | TRANSFORMER DESIGN | TRANSFORMER PRINCIPLES | TRANSFORMER THEORY | TRANSFORMER INSTALLATION | TRANSFORMER TUTORIALS
Subscribe to:
Post Comments (Atom)
Previous Articles
-
▼
2012
(166)
-
▼
February
(28)
- POWER TRANSFORMER PROTECTIVE MAINTENANCE BASICS AN...
- TRANSFORMER OIL CONTAINMENT BASICS AND TUTORIALS
- DISTRIBUTION TRANSFORMERS HARMONICS AND DC EFFECTS...
- CAN 60 HZ TRANSFORMERS BE OPERATED AT 50 HZ? BASIC...
- TRANSFORMER PARTS STORAGE GOOD PRACTICE BASICS AND...
- TRANSFORMER MINERAL INSULATING OIL HEALTH AND ENVI...
- TRANSFORMER OILS TESTING OF NEW OIL PROPERTIES BAS...
- INRUSH CURRENT CONSIDERATION FOR TRANSFORMERS BASI...
- POWER TRANSFORMER TEMPERATURE RISE TEST AT LOAD BE...
- TRANSFORMER BUSHINGS BASICS AND TUTORIALS
- TRANSFORMER LOSSES DEFINITION BASIC AND TUTORIALS
- MATCHING TRANSFORMERS FOR PARALLEL AND BANK OPERAT...
- EFFECTS OF SHORT CIRCUITS ON TRANSFORMERS BASICS A...
- EQUIVALENT CIRCUIT OF A THREEWINDING TRANSFORMER B...
- THREE WINDING TRANSFORMER BASIC INFORMATION What I...
- ADVANTAGES AND DISADVANTAGES OF THE AUTOTRANSFORME...
- POOR POWER QUALITY (PQ) EFFECTS ON TRANSFORMERS BA...
- BUCHHOLZ RELAY OR POWER TRANSFORMER BASICS AND TUT...
- THE SCOTT TRANSFORMER CONNECTION BASIC AND TUTORIALS
- TRANSFORMING THREE-PHASE VOLTAGES INTO TWO-PHASE V...
- PAD MOUNTED TRANSFORMERS SINGLE PHASE BASIC AND TU...
- POWER TRANSFORMER IMPACT RECORDER BASICS AND TUTOR...
- SINGLE PHASE TRANSFORMER POLARITY BASICS AND TUTOR...
- FERRORESONANCE AND DISTRIBUTION TRANSFORMER CONTRI...
- ZIGZAG CONNECTION OF TRANSFORMER BASICS AND TUTORIALS
- POWER TRANSFORMERS INSULATING LIQUIDS BASICS AND T...
- DIFFERENCE BETWEEN DRY TYPE AND LIQUID FILLED TRAN...
- TRANSFORMER FAILURE MODE BASICS AND TUTORIALS
-
▼
February
(28)
No comments:
Post a Comment