DISTRIBUTION TRANSFORMER TECHNICAL SPECIFICATION EXAMPLE DOWNLOAD LINK

TECHNICAL SPECIFICATIONS OF DISTRIBUTION TRANSFORMER LINKS
Technical Specifications Distribution Transformer

DISTRIBUTION TRANSFORMER SAMPLE SPECS FROM INDIA


2.1 All equipment and material shall be designed manufactured and tested in accordance with the  latest applicable Indian Standard. IEC standard and CBIP manuals except where modified  and / or supplemented this specification.

2.2. Equipment and material confirming to any other standard, which ensures equal or better  quality, may be accepted. In such case copies of English version of the standard adopted  shall be submitted.

2.3. The Transformer offered shall in general comply with the latest issues including amendments  of the following Indian standards but not restricted to it.

3. System Description:
The distribution transformers shall be installed at outdoor/indoor location along 11 kV  distribution networks, which consists of both underground and overhead network. The HV  winding would be connected to SFU/OCB/VCB of the ring main unit through 11 kV (E)  XLPE/PILC cable. LV winding would be connected to switch type Fuse section pillar through 1.1  kV 1c, 400 sq mm XLPE cable.

4. Design Criteria:
4.1. The transformers shall be installed in hot, humid tropical atmosphere. All equipment  accessories and wiring shall be provided with tropical finish to prevent fungus growth..

4.2. The transformers shall be capable of continuous operation of rated output under the operating conditions of voltage and frequency variations as per statutory limits governed by relevant  Indian Standard and Electricity Act-2003 and its amendments in force.

4.3. The transformer shall conform to best engineering practice.

4.4. The design material construction shall be such that to secure reliability, economy, safe and  convenient operation and shall include   all specified or unspecified incidental items  necessary for similar equipment for convenient working in every respect.

4.5. The transformers shall be capable of withstanding the short circuit stresses due to terminal  fault between phase to phase and phase to ground on one winding with full voltage  maintained on the other windings for a minimum period of three seconds.

4.6. The transformers shall be free from annoying hum or vibration. The design shall be such as  not to cause any undesirable interference with radio or communication circuits.

4.7. Atmospheric Condition: The equipment offered shall be suitable for continuous satisfactory  operation in following prevailing climatic conditions.

DOWNLOAD THE COMPLETER DOCUMENT HERE!!!

TRANSFORMER TAP CHANGER DESIGN FOR MODERATE KVA AND CURRENT BASIC AND TUTORIALS

TRANSFORMER TAP CHANGER DESIGN FOR MODERATE KVA AND CURRENT BASIC INFORMATION
Notes On Transformer Tap Changer Design



Tap-Changer Designs for Moderate kVA and Current. In the smaller ratings, where both the voltage and the current are moderate, the energy to be ruptured in switching from tap to tap becomes relatively so small that light and simple equipments are feasible.

A variety of mechanical designs, together with special circuits, has been evolved with the purpose of providing simpler, smaller, and inherently less expensive equipments. The following may be noted:

1. Designing the tap changer so that it is capable of rupturing the current directly on the same switches which select the taps

2. Designing the circuit so that the tapped winding is reversed in going from maximum to minimum range, thereby securing a substantial reduction in the rating of core and coils for a given output

3. Using higher switching speed, by means of which the life of the arcing contacts is increased.


Tap Changers Designed to Interrupt Current. The contactors C (Fig. 10-27) operate to open the switching circuits so that there is no interrupting duty on the selector contacts which connect to the transformer taps.


When the rated current is moderate, it becomes possible to rupture the current directly on the tap-selector switches and thus obtain a major economy in the cost of the mechanical equipment.

Previous Articles