Ferroresonance is the name given to the phenomenon where the exciting reactance of the transformer can become nearly equal to the capacitive reactance of the line to ground, forming a resonant circuit. Such a resonant circuit can distort the normal line impedance to ground so that one line of a 3-phase circuit can rise to a destructive voltage.
Distribution transformers are generally considered as transformers of 500 kVA, and smaller 67,000 V and below, both single-phase and 3-phase. Older installations are primarily pole-/platform-mounted units. Newer installations are frequently pad-mounted units.
Typical applications are for supplying power to farms, residences, public buildings or stores, workshops, and shopping centers. Distribution transformers have been standardized as to high- and low-voltage ratings, taps, type of bushings, size and type of terminals, mounting arrangements, nameplates, accessories, and a number of mechanical features, so that a good degree of interchangeability results for transformers in a certain kVA range of a given voltage rating. They are now normally designed for 65 C rise.
Such a ferroresonance practically never occurs in a normal circuit configuration with the transformers loaded, but it can exist under a combination of the following circumstances which usually occur only during switching of a 3-phase bank or blowing of a fuse in one line:
1. System neutral grounded, ungrounded transformer neutral
2. No load on the transformer
3. Relatively large capacitance line-to-ground such as may exist in cable circuits (underground distribution) or very long overhead lines (although ferroresonance can be and has been corrected by adding still more capacitance which presumably throws the combination out of resonance again)
Although ferroresonance has been studied at some length, it still does not seem possible to reliably predict its occurrence. Experience indicates that it is possible to prevent ferroresonance during switching on a transformer bank if all three transformers are resistance-loaded to 15% or more of their rating, or if special switches are used to assure that the three lines close simultaneously.
No comments:
Post a Comment