THREE-PHASE CONNECTIONS OF SINGLE-PHASE TRANSFORMERS BASIC INFORMATION AND TUTORIALS


Single-phase transformers can be connected to form three-phase transformer banks for stepping voltages up or down in three-phase systems. Four common configurations for connecting transformers in three-phase systems are delta–delta, wye–wye, wye–delta, and delta–wye.

The first three are shown in Fig. 3-9. The delta–wye is not shown because it is simply the reverse of the wye–delta connection.



Delta–delta connection
The delta–delta connection, shown in Fig. 3-9a, is widely used for moderate voltages. This connection has the advantage of remaining operational in what is known as the open delta or V connection if one transformer is damaged or taken out of service, leaving the remaining two functional.

If it is operated this way, the bank still delivers three-phase currents and voltages in their correct phase relationships. However, the capacity of the bank is reduced to 57.7 percent of the value obtained with all three transformers in service.

Wye–wye connection
In the wye–wye connection, shown in Fig. 3-9b, only 57.7 percent (or 1/1.73) of the line voltage is applied to each winding, but full line current flows in each transformer winding. The drawback to this connection is that power circuits supplied from a wye–wye bank generate serious electromagnetic interference, which could interrupt nearby communications circuits.

Because of this and other disadvantages, the wye–wye connection is seldom used. However, the wye–wye connection can be used to interconnect two delta systems and provide suitable neutrals for grounding both of them.

Delta–wye and wye–delta connections 
The delta–wye connection (not shown) is suitable for stepping up voltages because the voltage is increased by the transformer ratio multiplied by a factor of 1.73. Similarly, the wye–delta connection, shown in Fig. 3-9c, is used for stepping down voltages.

The high-voltage windings of most transformers operating at more than 100 kV are wye-connected. To match the polarities correctly in a wye connection, the H and X markings must be connected symmetrically.

In other words, if an H1 or X1 terminal is connected to the neutral, then all of the H1 or X1 terminals must be connected to the neutral and the remaining H2 or X2 terminals must be brought out as the line connections, as shown in Fig. 3-9b.

By contrast, in a delta connection, H1 must always be connected to H2 and X1 to X2, and the line connections must be made at these junctions, as shown in Fig. 3-9a.

When a large number of single-phase loads are to be served from a three-phase transformer bank, the wye connected low-voltage winding is recommended because the single-phase loads can be balanced evenly on all phases.

POWER TRANSFORMER TERMS GLOSSARY

The following technical terms apply to transformers.


BIL: An abbreviation for basic impulse level, a dielectric strength test. Transformer BIL is determined by applying a high-frequency square-wave voltage with a steep leading edge between the windings and between the windings and ground.

The BIL rating provides the maximum input kV rating that a transformer can withstand without causing insulation breakdown. The transformer must also be protected against natural or man-made electrical surges. The NEMA standard BIL rating is 10 kV.

Exciting current: In transformers, the current in amperes required for excitation. This current consists of two components: (1) real in the form of losses (no load watts) and (2) reactive power in kvar. Exciting current varies inversely with kVA rating from approximately 10 percent at 1 kVA to as low as 0.5 percent at 750 kVA.

Eddy-current losses: Contiguous energy losses caused when a varying magnetic flux sets up undesired eddy currents circulating in a ferromagnetic transformer core.

Hysteresis losses: Continuous energy losses in a ferromagnetic transformer core when it is taken through the complete magnetization cycle at the input frequency.

Insulating transformer: A term synonymous with isolating transformer, to describe the insulation or isolation between the primary and secondary windings. The only transformers that are not insulating or isolating are autotransformers. Insulation system temperature: The maximum temperature in degrees Celsius at the hottest point in the winding.

Isolating transformer: See insulating transformer. Shielded-winding transformer: A transformer with a conductive metal shield between the primary and secondary windings to attenuate transient noise.

Taps: Connections made to transformer windings other than at its terminals. They are provided on the input side of some high-voltage transformers to correct for high or low voltages so that the secondary terminals can deliver their full rated output voltages.

Temperature rise: The incremental temperature rise of the windings and insulation above the ambient temperature.

Transformer impedance: The current-limiting characteristic of a transformer expressed as a percentage. It is used in determining the interrupting capacity of a circuit breaker or fuse that will protect the transformer primary.

Transformer voltage regulation: The difference between the no-load and full-load voltages expressed as a percentage. A transformer that delivers 200 V at no load and 190 V at full load has a regulation of 5 percent.

Previous Articles