TESTING OF PHASE SHIFTING TRANSFORMERS BASIC AND TUTORIALS


Unless otherwise specified, all tests carried out at the factory should be made in accordance with IEEE Std C57.12.90-1993. Additional tests, particular to PSTs, are defined in 11.2, Special tests for PSTs.

Since the method of testing PSTs is dependent on the design, the testing methods will be mutually agreed upon by the user and manufacturer.

Resonant frequency and transient voltage tests
These tests are normally performed on the core and coil assembly in air. However, they can also be performed inside the tank filled with oil and fitted with temporary bushings to give access to required test points.

For a two-core design in one or more tanks, the windings must be interconnected as for impulse testing. These tests are intended to verify the transient voltages and natural frequencies at various points in the windings at all tap combinations and connections that can be compared and evaluated with studies.

Temperature tests and loss distribution
In most cases temporary bushings must be installed for connections to windings, which are not normally accessible, in order to determine the various resistances for the temperature tests and to determine the losses and the distribution of these losses.

The location of these temporary bushings depends on the design and winding configuration and is subject to agreement between user and manufacturer. For two-tank designs, the tanks may be separate to determine the losses in the various cores and windings and the temperature test.

This information will be provided by the manufacturer to the user during preliminary discussions.

Dielectric test
For dielectric tests each tank with its corresponding core and windings should be connected electrically and mechanically together as for the service condition. In most cases, temporary bushings must be installed on lower voltage windings in order to perform the IEEE standard low frequency induced test on the higher source and load side windings.

In very high voltage PSTs, it is sometimes necessary to install an auxiliary winding next to the core for shielding purposes. This auxiliary winding can then be used for performing the low-frequency induced test through the use of temporary bushings.

PHASE SHIFTING TRANSFORMER USUAL SERVICE CONDITION BASIC INFORMATION

These conditions shall be as stated in IEEE Std C57.12.00-2000, 4.1.1 through 4.1.7, and 4.1.9; 4.1.8 shall not apply. In 4.1.6.1 (a), the word secondary shall mean the L terminals of the PST.

a) The purchaser of the PST shall specify the switching arrangements that will be used to place the PST in and out of service. This shall include breaker or switch operations resulting from faults external and internal to the PST.

b) The PST shall be suitable for energization by voltage applied to either the S or L terminals.

c) The PST shall be capable of transferring rated kVA with the electrical source of power connected to the S or L terminals. Limited power transfer in the retard position has to be considered.

d) Seismic requirements shall be as specified in IEEE Std 693-1997. The seismic zone shall be provided by the purchaser. The foundation design shall be provided to the PST manufacturer by the purchaser.

The manufacturer shall provide for differential motion between the two tanks, if used, and in the case of remotely mounted radiators provide for their differential motion.

e) The manufacturer of the PST shall make provisions for differential alignments that will occur when two tanks are connected. The foundation tolerance shall be defined by agreement between purchaser and manufacturer.

f) Unless specified otherwise, the PST shall be manufactured for operation in the bypassed state with the source and load bushing connected through bus work. This shall require special consideration in design for lightning impulse and switching surges.

This condition will require additional testing with the terminals connected, as in operation, to demonstrate that the insulation level meets the specified BIL.

Previous Articles