ADVANTAGES AND DISADVANTAGES OF THE AUTOTRANSFORMER CONNECTION
What Are The Advantages & Disadvantages Of Auto-transformer Connection?
Summarizing the advantages of the autotransformer connection:
• There are considerable savings in size and weight.
• There are decreased losses for a given KVA capacity.
• Using an autotransformer connection provides an opportunity for achieving lower series impedances and better regulation.
Summarizing the disadvantages of the autotransformer connection:
• The autotransformer connection is not available with certain threephase connections.
• Higher (and possibly more damaging) short-circuit currents can result from a lower series impedance.
• Short circuits can impress voltages significantly higher than operating voltages across the windings of an autotransformer.
• For the same voltage surge at the line terminals, the impressed and induced voltages are greater for an autotransformer than for a twowinding transformer.
In many instances, the advantages of the autotransformer connection outweigh its disadvantages.
For example, when very large MVA capability is required and where a Grd.Y-Grd.Y connection is suitable, an autotransformer is usually the design of choice.
Because an autotransformer cannot provide a Δ-Y connection, autotransformers are not suitable for use as generator step-up transformers.
POWER TRANSFORMER | DISTRIBUTION TRANSFORMER | TRANSFORMER DESIGN | TRANSFORMER PRINCIPLES | TRANSFORMER THEORY | TRANSFORMER INSTALLATION | TRANSFORMER TUTORIALS
SUBSTATION TRANSFORMER BASICS AND TUTORIALS
SUBSTATION TRANSFORMER BASIC INFORMATION
What Are Substation Transformer? How To Choose Substation Transformer?
Substation transformers may consist of three-phase units or banks of three single-phase units. The size of these individual installations may range from 150 kVA (three-phase) in small rural stations to upwards of 25,000 kVA at larger urban and suburban substations.
Their impedances are generally low, restricting unregulated voltage variations at the bus to a few percent, except where fault current levels are high. In this case, transformer impedances are increased to limit fault current duty to design limits.
The impedances of the transformer banks in a station should match each other as closely as practical to have the banks share the load as equally as practical.
The transformers may be connected in a delta or wye pattern, on both the incoming high-voltage (subtransmission) side and the outgoing low-voltage (primary circuit) side. The transformers are ordinarily of the two-winding standard type, operating much as the distribution transformers.
For many reasons, including the random and nonuniform movement of the molecules in the core of the transformer, the alternating magnetic field that is set up may be distorted, producing serrated sine waves on both sides of the transformer. These serrations can be broken down into a series of harmonics or waves with frequencies of 3, 5, 7, etc., times the basic frequency (usually 60 cycles per second).
If the transformers have a ground on either side, the harmonics or fluctuations flow to ground and the original sine wave essentially remains undistorted. If the windings are connected in delta fashion, these fluctuations circulate around the delta, filtering out the harmonics and eliminating them from the sine wave formed in the windings; however, they do cause some unnecessary heating.
Where the transformer windings are connected in a wye arrangement without a ground or neutral back to the source, the harmonics may be particularly bothersome. To overcome these, each of the single-phase transformations (singly or within a three-phase unit) is provided with a third, small-capacity winding; the three such windings are connected in delta (even though the main primary and secondary windings are connected in wye).
The delta thus formed allows the harmonics to circulate within it, producing a little heat but essentially filtering them out, so that the sine wave produced on both the high and low sides of the transformer will be a more pure sine wave.
What Are Substation Transformer? How To Choose Substation Transformer?
![]() |
| Substation Transformer |
Their impedances are generally low, restricting unregulated voltage variations at the bus to a few percent, except where fault current levels are high. In this case, transformer impedances are increased to limit fault current duty to design limits.
The impedances of the transformer banks in a station should match each other as closely as practical to have the banks share the load as equally as practical.
The transformers may be connected in a delta or wye pattern, on both the incoming high-voltage (subtransmission) side and the outgoing low-voltage (primary circuit) side. The transformers are ordinarily of the two-winding standard type, operating much as the distribution transformers.
For many reasons, including the random and nonuniform movement of the molecules in the core of the transformer, the alternating magnetic field that is set up may be distorted, producing serrated sine waves on both sides of the transformer. These serrations can be broken down into a series of harmonics or waves with frequencies of 3, 5, 7, etc., times the basic frequency (usually 60 cycles per second).
If the transformers have a ground on either side, the harmonics or fluctuations flow to ground and the original sine wave essentially remains undistorted. If the windings are connected in delta fashion, these fluctuations circulate around the delta, filtering out the harmonics and eliminating them from the sine wave formed in the windings; however, they do cause some unnecessary heating.
Where the transformer windings are connected in a wye arrangement without a ground or neutral back to the source, the harmonics may be particularly bothersome. To overcome these, each of the single-phase transformations (singly or within a three-phase unit) is provided with a third, small-capacity winding; the three such windings are connected in delta (even though the main primary and secondary windings are connected in wye).
The delta thus formed allows the harmonics to circulate within it, producing a little heat but essentially filtering them out, so that the sine wave produced on both the high and low sides of the transformer will be a more pure sine wave.
Subscribe to:
Comments (Atom)
Previous Articles
-
▼
2025
(123)
-
▼
October
(123)
- Understanding Tensile and Compressive Forces in Wi...
- Understanding Axial Forces in Power Transformer De...
- Understanding the Dynamics of Winding Forces in El...
- Understanding Short-Circuit Forces in Power Transf...
- Understanding the Forces on Conductors in Power Tr...
- Ensuring Transformer Efficiency: Cooling Technique...
- Understanding Oil Flow and Temperature Distributio...
- Understanding Eddy Current Loss and Cooling in Pow...
- Understanding Winding Hot Spot Rise in Transformers
- Understanding Temperature Dynamics in Power Transf...
- Understanding Transformer Cooling: The Role of Dir...
- Understanding Radiator Placement and Cooling Metho...
- Understanding Transformer Cooling: The Role of Oil...
- Understanding Transformer Winding Hot Spot Factors...
- Enhancing Transformer Longevity with Natural Ester...
- Understanding Inrush Current in Transformer Operation
- Understanding Transformer Core Characteristics and...
- Understanding the Impact of Third Harmonic Voltage...
- Understanding No-Load Losses in Cold-Rolled Lamina...
- Understanding No-Load Loss in Transformer Core Design
- Understanding Transformer Design: Key Factors in E...
- Exploring the Dynamics of Steel in Transformer Cores
- Understanding Power Transformer Design: Key Concep...
- Understanding Transformer Design: Balancing Effici...
- Understanding Transformer Connections: A Primer on...
- Understanding the Winding Space Factor in Transfor...
- Understanding Load Loss and Transformer Design: A ...
- Understanding Tap Changers: Enhancing Transformer ...
- Understanding Transformer Efficiency and Voltage R...
- Understanding Transformer Impedance: Key Concepts ...
- Understanding Transformer Losses: No-Load and Load...
- Understanding Power Transformers: Insights into Th...
- Understanding Power Transformers: The Backbone of ...
- Understanding Load Losses and Impedance in Power T...
- Exploring the Intricacies of Magnetism and Sound i...
- Understanding Oil Thermal Behavior and Short-Circu...
- Understanding Insulation and Impedance in Electric...
- Understanding Transformer Insulation: Key Concepts...
- Understanding Transformer Winding Connections and ...
- Understanding Power Transformer Design Practices: ...
- Understanding the Load Loss Test in Power Transfor...
- Understanding Eddy Current Losses in Metals: A Com...
- Understanding Power Loss in Structural Components:...
- Understanding Eddy Loss in Structural Plates: A De...
- Understanding Eddy Currents and Stray Losses in Ma...
- Understanding Stray Losses in Transformers: The Ro...
- Understanding Stray Losses in Transformer Design
- Understanding Eddy Currents and Stray Losses in Po...
- Understanding Flux Density and Over-Excitation in ...
- Understanding Transformer Excitation and Losses: A...
- Understanding Core Loss in Transformers: The Role ...
- Understanding Core Losses in Magnetic Circuits: Hy...
- Understanding Core Losses in Electrical Transformers
- Understanding Zero-Sequence Impedance and Core Con...
- Understanding Single-Phase and Three-Phase Transfo...
- Understanding Transformer Core Designs: A Deep Div...
- Understanding Transformer Vector Groups: A Key to ...
- Understanding Parallel Operation of Transformers: ...
- Understanding Transformer Ratings: Why Volt-Ampere...
- Understanding Transformer Circuit Parameters and E...
- Understanding Transformer Efficiency and Regulation
- Understanding Transformer Short-Circuit Testing an...
- Understanding Transformer Parameters: The Per-Unit...
- Understanding Transformer Representation in Power ...
- Understanding Core Magnetization and Losses in Tra...
- Understanding Practical Transformers: The Mechanic...
- Understanding Ideal Transformer Behavior: A Deep D...
- Understanding Transformers: The Key to Electromagn...
- Understanding Transformers and Reactors: The Backb...
- Understanding Distribution Transformers: Types and...
- Understanding Transformer Fundamentals: Types and ...
- Understanding Transformer Technology: Insights and...
- Understanding SF6 Transformers: Benefits and Chall...
- Understanding Transformer Technology: Materials, D...
- Exploring Specialized Transformers: Beyond the Basics
- Understanding Transformer Design: Key Concepts and...
- Unlocking the Secrets of Transformer Engineering
- Unraveling Transformer Technology: A New Era of In...
- Unlocking Transformer Engineering: Insights from K...
- Exploring the Latest Advancements in Transformer T...
- Unraveling Transformer Engineering: Insights from ...
- Understanding Transformer Engineering: Key Insight...
- Understanding Single-Phase and Three-Phase Transfo...
- Understanding Pad-Mounted Distribution Transformer...
- Understanding Submersible Transformers: Key Featur...
- Understanding Submersible Transformers: Types and ...
- Understanding Transformers: The Backbone of Electr...
- Understanding Vault Installations: The Backbone of...
- Understanding Underground Transformers: A Key Comp...
- Understanding Transformer Polarity and Standards: ...
- Understanding Operational Concerns in Transformer ...
- Understanding Transformer Connections: A Guide to ...
- Understanding Single-Phase and Three-Phase Transfo...
- Understanding Transformer Configurations: A Guide ...
- Advancements in Transformer Design: From Adhesives...
- Understanding Transformer Coolants and Materials: ...
- Understanding the Evolution of Distribution Transf...
- The Evolution of Transformer Core Technology: A Lo...
- The Evolution of Distribution Transformers: From I...
- Innovations in Transformer Design: Paving the Way ...
-
▼
October
(123)
