WYE - DELTA OPEN TRANSFORMER BANKING BASICS AND TUTORIALS

WYE - DELTA OPEN TRANSFORMER BANKING BASIC INFORMATION
How To Bank Wye-Delta Open Transformer?


WHERE USED
To supply large single-phase, 240-volt loads with small amounts of three-phase loads. (Usually transformers of different kva sizes are used.) Also used for emergency operation when one unit of a four-wire primary, wye-delta bank is disabled. If a ground is required, it may be placed on an X1 or an X2 bushing as shown.

OPEN Y-DELTA
When operating Y-delta and one phase is disabled, service may be maintained at reduced load as shown. The neutral in this case must be connected to the neutral of the step-up bank though a copper conductor.

The system is unbalanced, electro-statically and electro-magnetically, so that telephone interference may be expected if the neutral is connected to ground. The useful capacity of the open Y-delta bank is 87 percent of the capacity of the installed transformers when the two units are identical. The capacity is 57 percent of a three transformer bank.



BANK RATING
This connection is relatively inefficient where three-phase loads predominate since it has only 86.6% of the rating of the two units making up the three-phase bank. It also has only 57.7 % of the three-phase rating of a closed delta-delta bank of three units.

STATIC DISCHARGE
Potentially present on a non-grounded primary wye connection. A high, excessive voltage results on a 3-phase Y-Δ connection on the secondary line to ground when one leg of the primary is open.

The voltage present is static with no power and bleeds off when taken to ground. This static can damage a volt-ohm meter. The static is greater when the secondary feeder is short and lesser when the secondary feeder is long.

The static problem is resolved by grounding one phase or the center tap of one transformer on the secondary side, but this usually requires special KWH metering. This static condition is present only when a primary line is open, not the secondary.

This static condition can occur on an open (2-transformers) or closed (3-transformers) bank. This static condition can occur with any primary voltage.

WYE WYE CLOSED TRANSFORMER BANKING

YY CLOSED/ NEUTRAL = PRIMARY YES SECONDARY YES
How To Bank YY Close Transformers?


WHERE USED
To supply single- and three-phase loads on four-wire, multi-grounded systems. When a system has changed from delta to a four-wire wye in order to increase system capacity, existing transformers may be used (Example: Old system was 2400 volts delta; new system is 2400/4160Y volts. Existing 2400/4160Y-volt transformers may be connected in wye and used.)


YY FOR LIGHTING AND POWER
This diagram shows a system on which the primary voltage was increased from 2400 volts to 4160 volts to increase the potential capacity of the system. The previously delta-connected distribution transformers are now connected from line to neutral.

The secondaries are connected in Y. In this system, the primary neutral is connected to the neutral of the supply voltage through a metallic conductor and carried with the phase conductor to minimize telephone interference.

If the neutral of the transformer is isolated from the system neutral, an unstable condition results at the transformer neutral caused primarily by third harmonic voltages. If the transformer neutral is connected to ground, the possibility of telephone interference is greatly enhanced, and there is also a possibility of resonance between the line capacitance to ground and the magnetizing impedance of the transformer.

Dotted lines indicate transformer tanks are grounded.



CAUTION
The primary neutral should be tied firmly to the system neutral; otherwise, excessive voltages may develop on the secondary side. (5)

It is necessary that the primary neutral be available when this connection is used, and the neutrals of the primary system and of the bank are tied together as shown. If the three-phase load is unbalanced, part of the load current flows in the primary neutral.

The third-harmonic component of the transformer exciting current also flows in the primary neutral. For these reasons, it is necessary that the neutrals be tied together as shown. If this tie were omitted, the line to neutral voltages on the secondary would be very unstable.

That is, if the load on one phase were heavier than on the other two, phases would rise. Also, large third-harmonic voltages would appear between lines and neutral, both in the transformers and in the secondary system, in addition to the 60-Hz component of voltage.

This means that for a given value of RMS voltage, the peak voltage would be much higher than for a pure 60-Hz voltage. This overstresses the insulation both in the transformers and in all apparatus connected to the secondaries.


IMPEDANCE & GROUNDING
The wye-grounded/wye-grounded connection should be used only on a grounded system. It will pass ground-fault current from the primary system. Single and three-phase loads may be connected depending on the rating of the individual units, it is not necessary that the impedance of each unit in the bank be the same.



Previous Articles