TRANSFORMER NO LOAD LOSSES BASIC INFORMATION
What Are The Transformer No Load Losses?
Alternating magnetic flux produces both hysteresis losses and eddy-current losses in the steel. As we have seen, hysteresis losses depend on several factors including the frequency, the peak flux density, the type of core steel used, and the orientation of the flux with respect to the ‘‘grain’’ of the steel.
All of the above factors, except the frequency, are under the control of the transformer designer. Core losses are sometimes referred to as iron losses and are commonly referred to as no load losses, because core losses do not require load currents.
Decreasing the induced voltage per turn can reduce the peak flux density. This obviously involves increasing the numbers of turns in both the primary and secondary windings in order to maintain the same transformer turns ratio.
The disadvantage of adding more turns is that this increases the length of conductor and increases the conductor resistance. More cross sectional area is required in order to keep the resistance constant.
Doubling the number of turns requires about four times the volume of copper. Another way of reducing core losses is to use various types of low-loss core steels that are now available, including ‘‘amorphous’’ core materials, which have extremely low losses and superior magnetic properties.
Unfortunately, amorphous core materials have ceramic-like properties, so fabricating transformer cores with these materials is much more difficult than with laminated steel cores.
With grain-oriented steel, the direction of the core flux must be kept more or less parallel to the grain of the steel by mitering the corners of the laminations where the flux changes direction by 90°. Since the flux will cross the grain at about a 45° angle at the mitered edges, the hysteresis losses will increase somewhat in these places.
These additional localized core losses must be factored into the calculation of the total core losses. Building up the core with thin laminated strips controls eddy losses in the core, each strip having an oxide film applied to the surface.
The oxide film is extremely thin and it is more like a high-resistance film than true electrical insulation; but since the potential differences between adjacent laminations is quite small, the resistance of the oxide film is very effective in breaking up the eddy current paths.
During the manufacture of the core, the core cutting machine must not be allowed to get dull; otherwise, ‘‘burrs’’ will form along the edges of the laminations. Burrs are imperfections that form electrical bridges between the laminations and create paths for eddy currents and increased losses.
Sometimes the eddy currents near a burr can be large enough to cause localized overheating that can actually cause core damage. Core losses are approximately proportional to the square of the excitation voltage E applied to the transformer.
Therefore, placing an equivalent linear conductance Gm across the transformer terminals can approximate transformer core losses. The core losses are expressed by Wm = E^2Gm
POWER TRANSFORMER | DISTRIBUTION TRANSFORMER | TRANSFORMER DESIGN | TRANSFORMER PRINCIPLES | TRANSFORMER THEORY | TRANSFORMER INSTALLATION | TRANSFORMER TUTORIALS
ISOLATION TRANSFORMER BASICS AND TUTORIALS
ISOLATION TRANSFORMER BASIC INFORMATION
What Are Isolation Transformers? How Isolation Transformer Works?
When servicing any electronic equipment, always use an isolation transformer to protect yourself from an electrical shock. During servicing, the isolation transformer is connected between the equipment and AC power line.
An isolation transformer is a transformer that has a 1:1turn ratio to provide the standard line voltage at the secondary outlet.
This means that it does not change the voltage. The transformer still produces 240 V AC as is outputs, but both sides of this AC lines are independent of ground.
If you were to accidentally touch one of these outputs, you would be protected. The isolation transformer must be rated to handle the power of any equipment connected to it. Typical ratings are 250 to 500 W.
Variable transformer or variacs is not an isolation transformer.
What Are Isolation Transformers? How Isolation Transformer Works?
When servicing any electronic equipment, always use an isolation transformer to protect yourself from an electrical shock. During servicing, the isolation transformer is connected between the equipment and AC power line.
An isolation transformer is a transformer that has a 1:1turn ratio to provide the standard line voltage at the secondary outlet.
This means that it does not change the voltage. The transformer still produces 240 V AC as is outputs, but both sides of this AC lines are independent of ground.
If you were to accidentally touch one of these outputs, you would be protected. The isolation transformer must be rated to handle the power of any equipment connected to it. Typical ratings are 250 to 500 W.
Variable transformer or variacs is not an isolation transformer.
Subscribe to:
Comments (Atom)
Previous Articles
-
▼
2025
(123)
-
▼
October
(123)
- Understanding Tensile and Compressive Forces in Wi...
- Understanding Axial Forces in Power Transformer De...
- Understanding the Dynamics of Winding Forces in El...
- Understanding Short-Circuit Forces in Power Transf...
- Understanding the Forces on Conductors in Power Tr...
- Ensuring Transformer Efficiency: Cooling Technique...
- Understanding Oil Flow and Temperature Distributio...
- Understanding Eddy Current Loss and Cooling in Pow...
- Understanding Winding Hot Spot Rise in Transformers
- Understanding Temperature Dynamics in Power Transf...
- Understanding Transformer Cooling: The Role of Dir...
- Understanding Radiator Placement and Cooling Metho...
- Understanding Transformer Cooling: The Role of Oil...
- Understanding Transformer Winding Hot Spot Factors...
- Enhancing Transformer Longevity with Natural Ester...
- Understanding Inrush Current in Transformer Operation
- Understanding Transformer Core Characteristics and...
- Understanding the Impact of Third Harmonic Voltage...
- Understanding No-Load Losses in Cold-Rolled Lamina...
- Understanding No-Load Loss in Transformer Core Design
- Understanding Transformer Design: Key Factors in E...
- Exploring the Dynamics of Steel in Transformer Cores
- Understanding Power Transformer Design: Key Concep...
- Understanding Transformer Design: Balancing Effici...
- Understanding Transformer Connections: A Primer on...
- Understanding the Winding Space Factor in Transfor...
- Understanding Load Loss and Transformer Design: A ...
- Understanding Tap Changers: Enhancing Transformer ...
- Understanding Transformer Efficiency and Voltage R...
- Understanding Transformer Impedance: Key Concepts ...
- Understanding Transformer Losses: No-Load and Load...
- Understanding Power Transformers: Insights into Th...
- Understanding Power Transformers: The Backbone of ...
- Understanding Load Losses and Impedance in Power T...
- Exploring the Intricacies of Magnetism and Sound i...
- Understanding Oil Thermal Behavior and Short-Circu...
- Understanding Insulation and Impedance in Electric...
- Understanding Transformer Insulation: Key Concepts...
- Understanding Transformer Winding Connections and ...
- Understanding Power Transformer Design Practices: ...
- Understanding the Load Loss Test in Power Transfor...
- Understanding Eddy Current Losses in Metals: A Com...
- Understanding Power Loss in Structural Components:...
- Understanding Eddy Loss in Structural Plates: A De...
- Understanding Eddy Currents and Stray Losses in Ma...
- Understanding Stray Losses in Transformers: The Ro...
- Understanding Stray Losses in Transformer Design
- Understanding Eddy Currents and Stray Losses in Po...
- Understanding Flux Density and Over-Excitation in ...
- Understanding Transformer Excitation and Losses: A...
- Understanding Core Loss in Transformers: The Role ...
- Understanding Core Losses in Magnetic Circuits: Hy...
- Understanding Core Losses in Electrical Transformers
- Understanding Zero-Sequence Impedance and Core Con...
- Understanding Single-Phase and Three-Phase Transfo...
- Understanding Transformer Core Designs: A Deep Div...
- Understanding Transformer Vector Groups: A Key to ...
- Understanding Parallel Operation of Transformers: ...
- Understanding Transformer Ratings: Why Volt-Ampere...
- Understanding Transformer Circuit Parameters and E...
- Understanding Transformer Efficiency and Regulation
- Understanding Transformer Short-Circuit Testing an...
- Understanding Transformer Parameters: The Per-Unit...
- Understanding Transformer Representation in Power ...
- Understanding Core Magnetization and Losses in Tra...
- Understanding Practical Transformers: The Mechanic...
- Understanding Ideal Transformer Behavior: A Deep D...
- Understanding Transformers: The Key to Electromagn...
- Understanding Transformers and Reactors: The Backb...
- Understanding Distribution Transformers: Types and...
- Understanding Transformer Fundamentals: Types and ...
- Understanding Transformer Technology: Insights and...
- Understanding SF6 Transformers: Benefits and Chall...
- Understanding Transformer Technology: Materials, D...
- Exploring Specialized Transformers: Beyond the Basics
- Understanding Transformer Design: Key Concepts and...
- Unlocking the Secrets of Transformer Engineering
- Unraveling Transformer Technology: A New Era of In...
- Unlocking Transformer Engineering: Insights from K...
- Exploring the Latest Advancements in Transformer T...
- Unraveling Transformer Engineering: Insights from ...
- Understanding Transformer Engineering: Key Insight...
- Understanding Single-Phase and Three-Phase Transfo...
- Understanding Pad-Mounted Distribution Transformer...
- Understanding Submersible Transformers: Key Featur...
- Understanding Submersible Transformers: Types and ...
- Understanding Transformers: The Backbone of Electr...
- Understanding Vault Installations: The Backbone of...
- Understanding Underground Transformers: A Key Comp...
- Understanding Transformer Polarity and Standards: ...
- Understanding Operational Concerns in Transformer ...
- Understanding Transformer Connections: A Guide to ...
- Understanding Single-Phase and Three-Phase Transfo...
- Understanding Transformer Configurations: A Guide ...
- Advancements in Transformer Design: From Adhesives...
- Understanding Transformer Coolants and Materials: ...
- Understanding the Evolution of Distribution Transf...
- The Evolution of Transformer Core Technology: A Lo...
- The Evolution of Distribution Transformers: From I...
- Innovations in Transformer Design: Paving the Way ...
-
▼
October
(123)
