POWER TRANSFORMER TAP CHANGERS BASIC AND TUTORIALS

TAP CHANGERS OF POWER TRANSFORMERS  BASIC INFORMATION
What Are Power Transformer Tap Changers? How Tap Changers Work?

When a transformer carries load current there is a variation in output voltage which is known as regulation. In order to compensate for this, additional turns are often made available so that the voltage ratio can be changed using a switch mechanism known as a tapchanger.

An off-circuit tapchanger can only be adjusted to switch additional turns in or out of circuit when the transformer is de-energized; it usually has between two and five tapping positions. An on-load tapchanger (OLTC) is designed to increase or decrease the voltage ratio when the load current is flowing, and the OLTC should switch the transformer load current from the tapping in operation to the neighbouring tapping without interruption.

The voltage between tapping positions (the step voltage) is normally between 0.8 per cent and 2.5 per cent of the rated voltage of the transformer. The OLTC mechanisms are based either on a slow-motion reactor principle or a high-speed resistor principle.

The former is commonly used in North America on the low-voltage winding, and the latter is normally used in Europe on the high-voltage winding.

The usual design of an OLTC in Europe employs a selector mechanism to make connection to the winding tapping contacts and a diverter mechanism to control current flows while the tapchanging takes place. The selector and diverter mechanisms may be combined or separate, depending upon the power rating.

In an OLTC which comprises a diverter switch and a tap selector, the tapchange occurs in two operations. First, the next tap is selected by the tap switch but does not carry load current, then the diverter switches the load current from the tap in operation to the selected tap. The two operations are shown in seven stages in Fig. 6.15.


The tap selector operates by gearing directly from a motor drive, and at the same time a spring accumulator is tensioned. This spring operates the diverter switch in a very short time (40 – 60 ms in modern designs), independently of the motion of the motor drive.

The gearing ensures that the diverter switch operation always occurs after the tap selection has been completed. During the diverter switch operation shown in Fig. 6.15(d), (e) and (f), transition resistors are inserted; these are loaded for 20–30 ms and since they have only a short-time loading the amount of material required is very low.

The basic arrangement of tapping windings is shown in Fig. 6.16. The linear arrangement in Fig. 6.16(a) is generally used on power transformers with moderate regulating ranges up to 20 per cent. The reversing changeover selector shown in Fig. 6.16(b) enables the voltage of the tapped winding to be added or subtracted from the main winding so that the tapping range may be doubled or the number of taps reduced.


The greatest copper losses occur at the position with the minimum number of effective turns. This reversing operation is achieved with a changeover selector which is part of the tap selector of the OLTC. The two-part coarse–fine arrangement shown in Fig. 6.16(c) may also be used.

In this case the reversing changeover selector for the fine winding can be connected to the ‘plus’ or ‘minus’ tapping of the coarse winding, and the copper losses are lowest at the position of the lowest number of effective turns. The coarse changeover switch is part of the OLTC.


Regulation is mostly carried out at the neutral point in star windings, resulting in a simple, low-cost, compact OLTC and tapping windings with low insulation strength to earth. Regulation of delta windings requires a three-phase OLTC, in which the three phases are insulated for the highest system voltage which appears between them; alternatively three single-phase OLTCs may be used.

POWER TRANSFORMER PROTECTIVE MAINTENANCE BASICS AND TUTORIALS

POWER TRANSFORMER PROTECTIVE MAINTENANCE BASIC INFORMATION
Protective Maintenance Of Power Transformers Tips and Tutorials


Protective Maintenance
This philosophy consists of performing preventive maintenance, predictive maintenance, and corrective maintenance. The preventive maintenance involves schedule maintenance and testing on a regular basis.

Predictive maintenance involves additional monitoring and testing, where as corrective maintenance involves repairing and restoring transformer integrity to its original condition when degraded conditions are discovered.

The objective of the protective maintenance of transformers is to control and prevent severe oil and winding (paper) insulation deterioration. Mineral oil and paper insulation of the winding are affected by moisture, oxygen, heat, and other catalytic agents such as copper, iron, electric stress, and so on.

The end result is that oxidation takes place in the oil which leads to sludging of the transformer. In sealed units ingress of moisture via atmosphere or seal leaks must be prevented.

Moisture will reduce the dielectric strength of both the oil and the winding insulation systems. In addition, excessive heating of the transformer will cause the paper (winding insulation) to decompose (accelerate aging) which in-turn produces moisture (i.e., break up of cellulose fi bres results in freeing hydrogen and oxygen atoms which combine to form H2O).

Increased moisture formed in the paper not only reduces the insulating strength of the paper but also, as temperature rises, the moisture will migrate from the paper insulation to the oil and decreasing its dielectric strength.


The first step is to build transformer designs to keep moisture and oxygen out of transformers. The next step is to operate transformers so that they are not operated beyond their temperature ratings and limits.

In addition to the above, the severity of deterioration should be controlled by monitoring and testing transformer insulation systems on periodic basis, and take corrective actions to restore transformer to its original condition.

This philosophy can be summarized by the following:

1. Control transformer heat
2. Inspect and maintain transformer auxiliary devices
3. Test and maintain transformer insulation systems
4. Maintain transformer bushing insulation
5. Maintain transformer protective coating

Previous Articles