INRUSH CURRENT CONSIDERATION FOR TRANSFORMERS BASIC INFORMATION


POWER TRANSFORMER INRUSH CURRENT CONSIDERATION
What Are The Inrush Current Consideration For Power Transformers?

Two distinctly different definitions for inrush current have been offered because one definition cannot serve all the purposes where inrush current is of interest.

Inrush Current:
is the maximum root-mean-square or average current value, determined for a specified interval, resulting from the excitation of the transformer with no connected load, and with essentially zero source impedance, and using the minimum primary turns tap available and its rated voltage.

Peak Inrush Current:
is the peak instantaneous current value resulting from the excitation of the transformer with no connected load, and with essentially zero source impedance, and using the minimum turns primary tap and rated voltage.

Magnetic and thermal cut-out devices usually are not responsive to one-half cycle of energy regardless of magnitude, hence two or more half cycles are needed to define the trip-out characteristics. Furthermore, these devices are not responsive to peak values, but rather to energy content. (I2 t) becomes the parameter of interest, using root-meansquare current values for fusing characteristics.

Relays and magnetic cut-outs are responsive to the average current value. Therefore, when inrush current is cited it should be made clear which of the two values (root mean square) (average) is indicated.

It should be noted that the inrush current of a transformer is seldom the same value as the steady-state exciting current, but is typically larger and decays to steady state after several cycles, depending on the condition of the core, the instantaneous value of applied voltage, etc.

It is important to consider this asymmetry of inrush current in the design and use of transformers and particularly in the specification of protective devices for the transformer. Maximum inrush current values occur when a transformer core that has an existing maximum residual flux is switched on at zero instantaneous voltage so the residual flux and the instantaneous magnetizing flux are additive.

Circuits are available using silicon controlled rectifier switching to cause this to happen deliberately. Alternately, random switch on twenty or more times will usually produce a near maximum value for a single-phase transformer.

It may take more times for a three-phase transformer unless all three lines are monitored. For the measurement of root-mean-square or average current it is necessary to use an adequate X-axis spread or chart speed so that curve area per cycle can be measured.

Peak inrush current values are of interest in connection with contact welding problems and with devices sensitive to instantaneous current magnitude. The measurement of true inrush current with any degree of accuracy can be very difficult because of the usual nonavailability of zero source impedance power lines for larger systems.

This problem can best be circumvented when the installed source capacity is known and specified in terms of impedance and phase angle, and rated capacity.

These values can then be used in test or computation to determine the installed inrush characteristics of a system which, of course, is the final value of interest. When inrush current values are presented for conditions other than essentially zero source impedance, the actual source impedance values applicable to the data should also be given.

POWER TRANSFORMER TEMPERATURE RISE TEST AT LOAD BEYOND NAMEPLATE RATING BASICS AND TUTORIALS


POWER TRANSFORMER TEMPERATURE RISE TEST AT LOAD BEYOND NAMEPLATE RATING BASIC INFORMATION
How To Conduct Temperature Rise Test For Power Transformer Beyond Nameplate Rating?

After completing the hot resistance tests data recorded during tests may be evaluated to determine preliminary exponents. The preliminary exponents may be used to evaluate whether an excessive top oil temperature or winding hottest spot temperature may occur during this test.

It is suggested that the winding hottest spot temperature be limited to 140 ˚C and top oil be limited to 110 ˚C, unless other values are agreed upon by the manufacturer and user. The top oil temperature and the measured rate of change of the oil level with temperature may be used to evaluate whether excessive oil levels may occur during this test.

If it becomes apparent that excessive values may be obtained, the load may be reduced from the 125% value, so the top oil temperature, winding hottest spot temperature, and oil level are limited to acceptable values.

After the evaluation of risk and the load beyond nameplate to be applied has been determined, proceed with the test as follows:

a) Short-circuit one or more windings, and circulate a constant current , at rated frequency, equal to
125% of rated current (1.25 x IR), plus additional current to produce losses equal to the rated no-load loss.

The current to be circulated may be determined using Equation (3). Continue applying this current until the top oil temperature does not vary by more than 2.5% or 1 ˚C, whichever is greater, in a time period of three consecutive hours.

b) Record all data listed in Clause 6 and Clause 7 after the top oil temperature rise has stabilized and
while is being applied:


c) Reduce the current to 125% of rated current ( ) and hold for a minimum time period of one hour. Calculate and record as measured current/ for later use in 9.8.5.

d) At the end of the one-hour period, while the current equal to 125% of rated ( ) is being applied, record all data.

e) Remove the load current, and measure a series of hot resistances of the windings at appropriate time intervals to determine the average winding temperatures using the cooling curve method in IEEE Std C57.12.90-1999. Only those windings found to be the hottest windings in item e) of 9.5 need be measured.

Previous Articles