EFFECTS OF SHORT CIRCUITS ON TRANSFORMERS BASICS AND TUTORIALS

EFFECTS OF SHORT CIRCUITS ON TRANSFORMERS BASIC
What Are The Effects Of Short Circuits On Transformers?


Transformers are susceptible to damage by secondary short-circuit currents having magnitudes that can be many times rated load current. The damage results from the following effects:

• The I 2R losses in the winding conductors are increased by the square of the current. This increases the temperature rise of the windings.

Because protective devices limit the duration of short circuits (as opposed to overloads), the temperature rise of the winding can be calculated by dividing the total energy released by the I 2R losses by the thermal capacity of the conductor.

• The short-circuit currents exclude flux in the core and increase stray flux around the core. This stray flux induces currents in metallic parts other than the winding conductors, which can be damaged thermally.

• A short circuit applied to the secondary circuit of an autotransformer can substantially increase the voltage across the series winding and across the common winding through induction.

This not only presents the possibility of damaging the winding insulation by overvoltage, but will also drive the core into saturation and significantly increase core losses with potential damaging effects from temperature.


• Bushings and tap changers have current ratings that are usually only marginally greater than the rated load of the transformer.

Since fault currents are many times rated currents and these components have short thermal time constants, they can be seriously overloaded and thermally damaged.

• Stray flux in the vicinity of current-carrying conductors produces mechanical forces on the conductors. When a short circuit is applied to a transformer, there is a significant increase in stray flux, resulting in greater mechanical forces on the windings, leads, bushings, and all other current-carrying components.

These components, especially the windings, must be braced to withstand these forces.

A good transformer design must take all of the above effects into account to minimize the risk of damage and assure a long service life.

EQUIVALENT CIRCUIT OF A THREEWINDING TRANSFORMER BASICS AND TUTORIALS

EQUIVALENT CIRCUIT OF A THREE WINDING TRANSFORMER BASIC INFORMATION
What Is The Equivalent Circuit Of A Three Winding Transformer?


Various forms of a three-winding transformer equivalent circuit have been proposed, but the simplest and most useful is the so-called T equivalent circuit, shown in Figure 4.9.


The magnetizing branch is omitted in the T equivalent since the magnetizing impedance is normally much greater than the series impedances. If voltages and impedances are expressed in per unit values, then the ideal transformers can sometimes be omitted also; however, in some cases 1:1 ideal transformers are retained so that the connections to the primary, secondary and tertiary circuits can be properly represented by the equivalent circuit.

In a three-winding transformer, eddy-current losses occur in each winding from stray flux produced by the other two windings, even if the third winding is not carrying any load. Therefore, each series resistance element in the T equivalent circuit of a three-winding transformer represent eddy-current losses produced by currents in other windings.

Hence, a series resistance does not belong to any particular winding but is distributed among all three widings. To derive the series impedance values in the T equivalent circuit, impedance measurements are made of each pair of windings taken two at a time.

One winding is short-circuited with voltage applied to the other winding while the third winding is open-circuited. The current is measured through the winding with the applied voltage. The impedance is equal to the applied voltage divided by that current.

The test setup to measure the impedance between the H and X windings of a single-phase three-winding transformer is shown in Figure 4.10.


The test for a three-phase, three-winding transformer is similar except that three-phase voltages are used. There are three sets of measurements taken. 

The first set of measurements applies a three-phase voltage to the H1, H2, and H3 terminals with the X1, X2, and X3 terminals shorted together and the Y1, Y2, and Y3 terminals open. 

The second set of measurements applies a three-phase voltage to the H1, H2, and H3 terminals with the Y1, Y2, and Y3 terminals shorted together and the X1, X2, and X3 terminals open. 

Finally, a three-phase voltage is applied to the X1, X2 and X3 terminals with the Y1, Y2, and Y3 terminals shorted together with the H1, H2, and H3 terminals open. The ZHX, ZHY, and ZXY impedance values are determined by dividing the voltages by the currents in each test. 

Previous Articles