THE SCOTT TRANSFORMER CONNECTION BASIC INFORMATION
What Is Scott Transformer Connection? how Scott Transformer Connection Works?
In order to overcome the disadvantage of the T connection, the Scott connection uses two single-phase transformers of a special design to transform three phase voltages and currents into two-phase voltages and currents.
The first transformer, called the ‘‘main,’’ has a center-tapped primary winding connected to the three-phase circuit with the secondary winding connected to the two-phase circuit. It is vital that the two halves of the center-tapped primary winding are wound around the same core leg so that the ampere-turns of the two halves cancel out each other. The ends of the center-tapped main primary winding are connected to two of the phases of the three-phase circuit.
The second transformer, called the ‘‘teaser,’’ has one end of its primary winding connected to the third phase of the three-phase circuit and the other end connected to the center tap of the primary winding of the main. The Scott connection requires no primary neutral connection, so zero-sequence currents are blocked.
The secondary windings of both the main and teaser transformers are connected to the two-phase circuit. The Scott connection is shown in Figure 2.18 for a two-phase, five-wire circuit, where both secondary windings are center-tapped and the center taps are connected to the neutral of the five wire circuit. Three-wire and four-wire configurations are also possible.
If the main transformer has a turns ratio of 1: 1, then the teaser transformer requires a turns ratio of 0.866:1 for balanced operation. The principle of operation of the Scott connection can be most easily seen by first applying a current to the teaser secondary windings, and then applying a current to the main secondary winding, calculating the primary currents separately and superimposing the results.
Apply a 1.0 per unit load connected between phase 1 and phase 3 of the secondary:
Secondary current from the teaser winding into phase 1 1.0∠90°
Secondary current from the teaser winding into phase 3 1.0∠90°
Primary current from A phase into the teaser winding 1.1547∠90°
Primary current from B phase into the main winding 0.5774∠90°
Primary current from C phase into the main winding 0.5774∠90°
The reason that the primary current from A phase into the teaser winding is 1.1547 per unit is due to 0.866:1 turns ratio of the teaser, transforming 1/0.866 1.1547 times the secondary current. This current must split in half at the center tap of the main primary winding because both halves of the main primary winding are wound on the same core and the total ampere-turns of the main winding must equal zero.
Apply a 1.0 per unit load connected between phase 2 and phase 4 of the secondary:
Secondary current from the main winding into phase 2 1.0∠0°
Secondary current from the main winding into phase 4 1.0∠0°
Primary current from B phase into the main winding 1.0∠0°
Primary current from C phase into the main winding 1.0∠0°
Primary current from A phase into the teaser winding 0
Superimpose the two sets of primary currents:
I a 1.1547∠90° 0 1.1547∠90°
I b 0.5774∠90° 1.0∠0° 1.1547∠ 30°
I c 0.5774∠90° 1.0∠0° 1.1547∠210°
Notice that the primary three-phase currents are balanced; i.e., the phase currents have the same magnitude and their phase angles are 120° apart. The apparent power supplied by the main transformer is greater than the apparent power supplied by the teaser transformer.
This is easily verified by observing that the primary currents in both transformers have the same magnitude; however, the primary voltage of the teaser transformer is only 86.6% as great as the primary voltage of the main transformer.
Therefore, the teaser transforms only 86.6% of the apparent power transformed by the main. We also observe that while the total real power delivered to the two phase load is equal to the total real power supplied from the three-phase system, the total apparent power transformed by both transformers is greater than the total apparent power delivered to the two-phase load.
Using the numerical example above, the total load is 2.0 per unit. The apparent power transformed by the teaser is 0.866 I a 1.0 per unit, and the apparent power transformed by the main is 1.0 I b 1.1547 per unit for a total of 2.1547 per unit of apparent power transformed.
The additional 0.1547 per unit of apparent power is due to parasitic reactive power flowing between the two halves of the primary winding in the main transformer. Single-phase transformers used in the Scott connection are specialty items that are virtually impossible to buy ‘‘off the shelf ’’ nowadays.
POWER TRANSFORMER | DISTRIBUTION TRANSFORMER | TRANSFORMER DESIGN | TRANSFORMER PRINCIPLES | TRANSFORMER THEORY | TRANSFORMER INSTALLATION | TRANSFORMER TUTORIALS
Showing posts with label Scott Connection. Show all posts
Showing posts with label Scott Connection. Show all posts
Subscribe to:
Comments (Atom)
Previous Articles
-
▼
2025
(123)
-
▼
October
(123)
- Understanding Tensile and Compressive Forces in Wi...
- Understanding Axial Forces in Power Transformer De...
- Understanding the Dynamics of Winding Forces in El...
- Understanding Short-Circuit Forces in Power Transf...
- Understanding the Forces on Conductors in Power Tr...
- Ensuring Transformer Efficiency: Cooling Technique...
- Understanding Oil Flow and Temperature Distributio...
- Understanding Eddy Current Loss and Cooling in Pow...
- Understanding Winding Hot Spot Rise in Transformers
- Understanding Temperature Dynamics in Power Transf...
- Understanding Transformer Cooling: The Role of Dir...
- Understanding Radiator Placement and Cooling Metho...
- Understanding Transformer Cooling: The Role of Oil...
- Understanding Transformer Winding Hot Spot Factors...
- Enhancing Transformer Longevity with Natural Ester...
- Understanding Inrush Current in Transformer Operation
- Understanding Transformer Core Characteristics and...
- Understanding the Impact of Third Harmonic Voltage...
- Understanding No-Load Losses in Cold-Rolled Lamina...
- Understanding No-Load Loss in Transformer Core Design
- Understanding Transformer Design: Key Factors in E...
- Exploring the Dynamics of Steel in Transformer Cores
- Understanding Power Transformer Design: Key Concep...
- Understanding Transformer Design: Balancing Effici...
- Understanding Transformer Connections: A Primer on...
- Understanding the Winding Space Factor in Transfor...
- Understanding Load Loss and Transformer Design: A ...
- Understanding Tap Changers: Enhancing Transformer ...
- Understanding Transformer Efficiency and Voltage R...
- Understanding Transformer Impedance: Key Concepts ...
- Understanding Transformer Losses: No-Load and Load...
- Understanding Power Transformers: Insights into Th...
- Understanding Power Transformers: The Backbone of ...
- Understanding Load Losses and Impedance in Power T...
- Exploring the Intricacies of Magnetism and Sound i...
- Understanding Oil Thermal Behavior and Short-Circu...
- Understanding Insulation and Impedance in Electric...
- Understanding Transformer Insulation: Key Concepts...
- Understanding Transformer Winding Connections and ...
- Understanding Power Transformer Design Practices: ...
- Understanding the Load Loss Test in Power Transfor...
- Understanding Eddy Current Losses in Metals: A Com...
- Understanding Power Loss in Structural Components:...
- Understanding Eddy Loss in Structural Plates: A De...
- Understanding Eddy Currents and Stray Losses in Ma...
- Understanding Stray Losses in Transformers: The Ro...
- Understanding Stray Losses in Transformer Design
- Understanding Eddy Currents and Stray Losses in Po...
- Understanding Flux Density and Over-Excitation in ...
- Understanding Transformer Excitation and Losses: A...
- Understanding Core Loss in Transformers: The Role ...
- Understanding Core Losses in Magnetic Circuits: Hy...
- Understanding Core Losses in Electrical Transformers
- Understanding Zero-Sequence Impedance and Core Con...
- Understanding Single-Phase and Three-Phase Transfo...
- Understanding Transformer Core Designs: A Deep Div...
- Understanding Transformer Vector Groups: A Key to ...
- Understanding Parallel Operation of Transformers: ...
- Understanding Transformer Ratings: Why Volt-Ampere...
- Understanding Transformer Circuit Parameters and E...
- Understanding Transformer Efficiency and Regulation
- Understanding Transformer Short-Circuit Testing an...
- Understanding Transformer Parameters: The Per-Unit...
- Understanding Transformer Representation in Power ...
- Understanding Core Magnetization and Losses in Tra...
- Understanding Practical Transformers: The Mechanic...
- Understanding Ideal Transformer Behavior: A Deep D...
- Understanding Transformers: The Key to Electromagn...
- Understanding Transformers and Reactors: The Backb...
- Understanding Distribution Transformers: Types and...
- Understanding Transformer Fundamentals: Types and ...
- Understanding Transformer Technology: Insights and...
- Understanding SF6 Transformers: Benefits and Chall...
- Understanding Transformer Technology: Materials, D...
- Exploring Specialized Transformers: Beyond the Basics
- Understanding Transformer Design: Key Concepts and...
- Unlocking the Secrets of Transformer Engineering
- Unraveling Transformer Technology: A New Era of In...
- Unlocking Transformer Engineering: Insights from K...
- Exploring the Latest Advancements in Transformer T...
- Unraveling Transformer Engineering: Insights from ...
- Understanding Transformer Engineering: Key Insight...
- Understanding Single-Phase and Three-Phase Transfo...
- Understanding Pad-Mounted Distribution Transformer...
- Understanding Submersible Transformers: Key Featur...
- Understanding Submersible Transformers: Types and ...
- Understanding Transformers: The Backbone of Electr...
- Understanding Vault Installations: The Backbone of...
- Understanding Underground Transformers: A Key Comp...
- Understanding Transformer Polarity and Standards: ...
- Understanding Operational Concerns in Transformer ...
- Understanding Transformer Connections: A Guide to ...
- Understanding Single-Phase and Three-Phase Transfo...
- Understanding Transformer Configurations: A Guide ...
- Advancements in Transformer Design: From Adhesives...
- Understanding Transformer Coolants and Materials: ...
- Understanding the Evolution of Distribution Transf...
- The Evolution of Transformer Core Technology: A Lo...
- The Evolution of Distribution Transformers: From I...
- Innovations in Transformer Design: Paving the Way ...
-
▼
October
(123)
